Home
Class 12
MATHS
Find (dy)/(dx) If sin^2 x +cos^2 y=1...

Find `(dy)/(dx)` If `sin^2 x +cos^2 y=1`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the equation \( \sin^2 x + \cos^2 y = 1 \), we will differentiate both sides of the equation with respect to \(x\). ### Step-by-Step Solution: 1. **Differentiate both sides of the equation**: \[ \frac{d}{dx}(\sin^2 x + \cos^2 y) = \frac{d}{dx}(1) \] Since the derivative of a constant (1) is 0, we have: \[ \frac{d}{dx}(\sin^2 x) + \frac{d}{dx}(\cos^2 y) = 0 \] 2. **Apply the chain rule to differentiate \(\sin^2 x\)**: \[ \frac{d}{dx}(\sin^2 x) = 2\sin x \cdot \frac{d}{dx}(\sin x) = 2\sin x \cdot \cos x \] Thus, we have: \[ 2\sin x \cos x + \frac{d}{dx}(\cos^2 y) = 0 \] 3. **Apply the chain rule to differentiate \(\cos^2 y\)**: \[ \frac{d}{dx}(\cos^2 y) = 2\cos y \cdot \frac{d}{dx}(\cos y) = 2\cos y \cdot (-\sin y \cdot \frac{dy}{dx}) \] Therefore, substituting this back, we get: \[ 2\sin x \cos x - 2\cos y \sin y \cdot \frac{dy}{dx} = 0 \] 4. **Rearranging the equation**: \[ 2\sin x \cos x = 2\cos y \sin y \cdot \frac{dy}{dx} \] 5. **Isolate \(\frac{dy}{dx}\)**: \[ \frac{dy}{dx} = \frac{2\sin x \cos x}{2\cos y \sin y} \] Simplifying this gives: \[ \frac{dy}{dx} = \frac{\sin x \cos x}{\cos y \sin y} \] 6. **Using the double angle identity**: We can express \(\sin x \cos x\) as \(\frac{1}{2}\sin(2x)\) and \(\sin y \cos y\) as \(\frac{1}{2}\sin(2y)\): \[ \frac{dy}{dx} = \frac{\frac{1}{2}\sin(2x)}{\frac{1}{2}\sin(2y)} = \frac{\sin(2x)}{\sin(2y)} \] ### Final Answer: \[ \frac{dy}{dx} = \frac{\sin(2x)}{\sin(2y)} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise COMPETITION FILE|16 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) if y+ sin y= cos x

Find (dy)/(dx) when sin^(2)x+cos^(2)y=1 .

Find (dy)/(dx) if y=sin(x^(2))

Find (dy)/(dx) ,if y=sin(x^(2))

Find (dy)/(dx) of y+sin y=cos x

Find (dy)/(dx) of x^(2)+xy+cos^(2)y=1

Find (dy)/(dx) if,sin xy+cos(x+y)=1

Find (dy)/(dx) for y=sin(x^(2)+1)

Find (dy)/(dx) if x=cos theta - cos 2 theta and" "y = sin theta - sin 2theta

Find (dy)/(dx)" for "y=sin^(-1) (cos x), x in (0, pi)cup (pi, 2pi).