Home
Class 12
MATHS
Find (dy)/(dx) when x=4t , y=4/t...

Find `(dy)/(dx)` when x=4t , y=`4/t`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) when \(x = 4t\) and \(y = \frac{4}{t}\), we will use the chain rule. We can express \(\frac{dy}{dx}\) in terms of \(\frac{dy}{dt}\) and \(\frac{dx}{dt}\) as follows: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] ### Step 1: Differentiate \(y\) with respect to \(t\) Given \(y = \frac{4}{t}\), we can rewrite this as: \[ y = 4t^{-1} \] Now, we differentiate \(y\) with respect to \(t\): \[ \frac{dy}{dt} = 4 \cdot (-1) \cdot t^{-2} = -\frac{4}{t^2} \] ### Step 2: Differentiate \(x\) with respect to \(t\) Given \(x = 4t\), we differentiate \(x\) with respect to \(t\): \[ \frac{dx}{dt} = 4 \] ### Step 3: Substitute \(\frac{dy}{dt}\) and \(\frac{dx}{dt}\) into the chain rule formula Now we can substitute the values we found into the formula for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{-\frac{4}{t^2}}{4} \] ### Step 4: Simplify the expression Now we simplify the expression: \[ \frac{dy}{dx} = -\frac{4}{t^2} \cdot \frac{1}{4} = -\frac{1}{t^2} \] ### Final Result Thus, the derivative \(\frac{dy}{dx}\) when \(x = 4t\) and \(y = \frac{4}{t}\) is: \[ \frac{dy}{dx} = -\frac{1}{t^2} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise COMPETITION FILE|16 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , if x=2a t^2 , y=a t^4

Find (dy)/(dx) , if x=a t^2 , y=2a t

Find (dy)/(dx), when x=(3at)/(1+t^(2)) and y=(3at^(2))/(1+t^(2))

Find (dy)/(dx), when x=(2t)/(1+t^(2)) and y=(1-t^(2))/(1+t^(2))

If x and y are connected parametrically by the equations given,without eliminating the parameter,Find (dy)/(dx)x=4t,y=(4)/(t)

Find (dy)/(dx), when x=(e^(t)+e^(-t))/(2) and y=(e^(t)-e^(-t))/(2)

Find (dy)/(dx) , when x=a(t+sint) and y=a(1-cost).

Find (dy)/(dx) if, (i) x=at^2, y=2at (ii) x=2at^2, y=at^4 (iii) x=e^(3t),y=e^(4t+5)

Find (dy)/(dx) , if x=a t^2, y=2a t .

Find (dy)/(dx),quad when x=(3at)/(a+t^(2)) and y=(3at^(2))/(1+t^(2))