Home
Class 12
MATHS
If y=tan^(-1) ((sqrt(1+x^2)+sqrt(1-x^2))...

If `y=tan^(-1) ((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))), x^2 le 1` , then find `(dy)/(dx)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the given function \[ y = \tan^{-1} \left( \frac{\sqrt{1+x^2} + \sqrt{1-x^2}}{\sqrt{1+x^2} - \sqrt{1-x^2}} \right), \quad x^2 \leq 1 \] we will follow these steps: ### Step 1: Simplify the Argument of the Arctangent Let \[ u = \frac{\sqrt{1+x^2} + \sqrt{1-x^2}}{\sqrt{1+x^2} - \sqrt{1-x^2}} \] ### Step 2: Differentiate \(y\) with Respect to \(u\) Using the derivative of the arctangent function, we have: \[ \frac{dy}{du} = \frac{1}{1+u^2} \] ### Step 3: Differentiate \(u\) with Respect to \(x\) Now we need to find \(\frac{du}{dx}\). We will use the quotient rule: \[ \frac{du}{dx} = \frac{(\sqrt{1+x^2} - \sqrt{1-x^2}) \frac{d}{dx}(\sqrt{1+x^2} + \sqrt{1-x^2}) - (\sqrt{1+x^2} + \sqrt{1-x^2}) \frac{d}{dx}(\sqrt{1+x^2} - \sqrt{1-x^2})}{(\sqrt{1+x^2} - \sqrt{1-x^2})^2} \] ### Step 4: Find the Derivatives of the Numerators Now we compute the derivatives: 1. For \(\sqrt{1+x^2}\): \[ \frac{d}{dx}(\sqrt{1+x^2}) = \frac{x}{\sqrt{1+x^2}} \] 2. For \(\sqrt{1-x^2}\): \[ \frac{d}{dx}(\sqrt{1-x^2}) = \frac{-x}{\sqrt{1-x^2}} \] ### Step 5: Substitute Back into \(\frac{du}{dx}\) Substituting these derivatives back gives: \[ \frac{du}{dx} = \frac{(\sqrt{1+x^2} - \sqrt{1-x^2}) \left( \frac{x}{\sqrt{1+x^2}} + \frac{x}{\sqrt{1-x^2}} \right) - (\sqrt{1+x^2} + \sqrt{1-x^2}) \left( \frac{x}{\sqrt{1+x^2}} - \frac{x}{\sqrt{1-x^2}} \right)}{(\sqrt{1+x^2} - \sqrt{1-x^2})^2} \] ### Step 6: Combine the Derivatives Now, we can combine the derivatives using the chain rule: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{1}{1+u^2} \cdot \frac{du}{dx} \] ### Step 7: Final Expression Substituting \(u\) back into the equation will give us the final expression for \(\frac{dy}{dx}\).
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise COMPETITION FILE|16 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

y=Tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))) then find (8ddy)/(8ddx)

If y=tan^(-1)[(sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))] for 0<|x|<1 ,find (dy)/(dx)

If y=tan^(-1){(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))} , -1 < x < 1, x!= 0 . Find dy/dx .

If y=tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))), find (dy)/(dx)

y=(tan^(-1)(sqrt(1+x^(2))+sqrt(1-x^(2))))/(sqrt(1+x^(2))-sqrt(1-x^(2))) then (dy)/(dx)

tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))),absxx le 1/sqrt2 , is equal to

if tan^(-1){(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))}=alpha then