Home
Class 12
MATHS
Calculate the absolute maximum and absol...

Calculate the absolute maximum and absolute minimum value of the function `f(x)=(x+1)/(sqrt(x^(2)+1)), 0lexle2.`

Text Solution

AI Generated Solution

The correct Answer is:
To find the absolute maximum and minimum values of the function \( f(x) = \frac{x+1}{\sqrt{x^2 + 1}} \) on the interval \( [0, 2] \), we will follow these steps: ### Step 1: Find the derivative of the function We start by differentiating \( f(x) \). The function is in the form of \( \frac{u}{v} \), where \( u = x + 1 \) and \( v = \sqrt{x^2 + 1} \). Using the quotient rule: \[ f'(x) = \frac{v \cdot u' - u \cdot v'}{v^2} \] where \( u' = 1 \) and \( v' = \frac{x}{\sqrt{x^2 + 1}} \). Thus, we have: \[ f'(x) = \frac{\sqrt{x^2 + 1} \cdot 1 - (x + 1) \cdot \frac{x}{\sqrt{x^2 + 1}}}{x^2 + 1} \] ### Step 2: Simplify the derivative Now we simplify the expression: \[ f'(x) = \frac{\sqrt{x^2 + 1} - \frac{x(x + 1)}{\sqrt{x^2 + 1}}}{x^2 + 1} \] Multiplying through by \( \sqrt{x^2 + 1} \): \[ f'(x) = \frac{(x^2 + 1) - x(x + 1)}{(x^2 + 1)\sqrt{x^2 + 1}} \] This simplifies to: \[ f'(x) = \frac{1 - x^2}{(x^2 + 1)\sqrt{x^2 + 1}} \] ### Step 3: Set the derivative to zero To find critical points, we set \( f'(x) = 0 \): \[ 1 - x^2 = 0 \implies x^2 = 1 \implies x = 1 \] ### Step 4: Evaluate the function at critical points and endpoints Now we evaluate \( f(x) \) at the critical point \( x = 1 \) and the endpoints \( x = 0 \) and \( x = 2 \). 1. **At \( x = 0 \)**: \[ f(0) = \frac{0 + 1}{\sqrt{0^2 + 1}} = \frac{1}{1} = 1 \] 2. **At \( x = 1 \)**: \[ f(1) = \frac{1 + 1}{\sqrt{1^2 + 1}} = \frac{2}{\sqrt{2}} = \sqrt{2} \approx 1.414 \] 3. **At \( x = 2 \)**: \[ f(2) = \frac{2 + 1}{\sqrt{2^2 + 1}} = \frac{3}{\sqrt{5}} \approx 1.341 \] ### Step 5: Compare the values Now we compare the values obtained: - \( f(0) = 1 \) - \( f(1) = \sqrt{2} \approx 1.414 \) - \( f(2) = \frac{3}{\sqrt{5}} \approx 1.341 \) ### Conclusion The absolute maximum value of \( f(x) \) on the interval \( [0, 2] \) is \( \sqrt{2} \) at \( x = 1 \), and the absolute minimum value is \( 1 \) at \( x = 0 \). ### Final Answer - Absolute Maximum: \( \sqrt{2} \) - Absolute Minimum: \( 1 \)
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    MODERN PUBLICATION|Exercise Frequently Asked Questions|44 Videos
  • APPLICATIONS OF DERIVATIVES

    MODERN PUBLICATION|Exercise Questions From NCERT Exemplar|7 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Find the absolute maximum and absolute minimum values of f(x)=(x-1)^(2)+3 in [-3,1]

Find the absolute maximum and absolute minimum value of f(x) =(x-2) sqrt(x-1) in [1,9]

Find the minimum and maximum values of the function f(x)=x(1-sqrt(x))

The sum of the maximum and minimum values of the function f(x)=(1)/(1+(2cos x-4sin x)^(2)) is

Find the absolute maximum and the absolute minimum value of the function given by : f(x)=sin^(2)x-cos x, x in [0, pi].

Find the absolute maximum value and absolute minimum value of the following question f(x) =((1)/(2)-x)^(2)+x^(3)" in "[-2,2.5]

Find the absolute maximum and absolute minimum values of f(x)=4x-(x^(2))/(2) in [-2,4.5]

Find the absolute maximum and absolute minimum vlaues of a function f given by f(x)=2x^(3)-(33x^(2))/(2)+36x+2 on the interval [-1,9] .

Find the maximum and minimum values of the function f(x) = (sin x)/(1+ tan x) ,(0 lt x lt 2pi) .