Home
Class 12
MATHS
Find the absolute maximum and the absolu...

Find the absolute maximum and the absolute minimum value of the function given by :
`f(x)=sin^(2)x-cos x, x in [0, pi].`

Text Solution

AI Generated Solution

The correct Answer is:
To find the absolute maximum and minimum values of the function \( f(x) = \sin^2 x - \cos x \) on the interval \( [0, \pi] \), we will follow these steps: ### Step 1: Rewrite the function We start with the function: \[ f(x) = \sin^2 x - \cos x \] Using the identity \( \sin^2 x = 1 - \cos^2 x \), we can rewrite the function as: \[ f(x) = 1 - \cos^2 x - \cos x \] This simplifies to: \[ f(x) = -\cos^2 x - \cos x + 1 \] ### Step 2: Find the derivative Next, we find the derivative of \( f(x) \): \[ f'(x) = \frac{d}{dx}(-\cos^2 x - \cos x + 1) \] Using the chain rule and the derivative of cosine, we get: \[ f'(x) = -2\cos x(-\sin x) - (-\sin x) = 2\cos x \sin x + \sin x \] Factoring out \( \sin x \): \[ f'(x) = \sin x(2\cos x + 1) \] ### Step 3: Set the derivative to zero To find critical points, we set the derivative equal to zero: \[ \sin x(2\cos x + 1) = 0 \] This gives us two cases: 1. \( \sin x = 0 \) 2. \( 2\cos x + 1 = 0 \) **Case 1:** \( \sin x = 0 \) In the interval \( [0, \pi] \), this occurs at: \[ x = 0, \pi \] **Case 2:** \( 2\cos x + 1 = 0 \) Solving for \( \cos x \): \[ \cos x = -\frac{1}{2} \] In the interval \( [0, \pi] \), this occurs at: \[ x = \frac{2\pi}{3} \] ### Step 4: Evaluate the function at critical points and endpoints Now we evaluate \( f(x) \) at the critical points and the endpoints of the interval: 1. At \( x = 0 \): \[ f(0) = \sin^2(0) - \cos(0) = 0 - 1 = -1 \] 2. At \( x = \pi \): \[ f(\pi) = \sin^2(\pi) - \cos(\pi) = 0 - (-1) = 1 \] 3. At \( x = \frac{2\pi}{3} \): \[ f\left(\frac{2\pi}{3}\right) = \sin^2\left(\frac{2\pi}{3}\right) - \cos\left(\frac{2\pi}{3}\right) \] Calculating \( \sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2} \) and \( \cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2} \): \[ f\left(\frac{2\pi}{3}\right) = \left(\frac{\sqrt{3}}{2}\right)^2 - \left(-\frac{1}{2}\right) = \frac{3}{4} + \frac{1}{2} = \frac{3}{4} + \frac{2}{4} = \frac{5}{4} \] ### Step 5: Determine absolute maximum and minimum Now we compare the values: - \( f(0) = -1 \) - \( f(\pi) = 1 \) - \( f\left(\frac{2\pi}{3}\right) = \frac{5}{4} \) The absolute maximum value is \( \frac{5}{4} \) at \( x = \frac{2\pi}{3} \) and the absolute minimum value is \( -1 \) at \( x = 0 \). ### Final Answer - Absolute Maximum: \( \frac{5}{4} \) at \( x = \frac{2\pi}{3} \) - Absolute Minimum: \( -1 \) at \( x = 0 \) ---
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    MODERN PUBLICATION|Exercise Frequently Asked Questions|44 Videos
  • APPLICATIONS OF DERIVATIVES

    MODERN PUBLICATION|Exercise Questions From NCERT Exemplar|7 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Find the absolute maximum and minimum values of the function f given by f(x)=cos^(2)x+sin x,x in[0,pi]

Find the absolute maximum and minimum values of the function f given by f(x)=cos^(2)x+sin xx in[0,pi]

Find the absolute maximum value and the absolute minimum value of the following functions is given intervals : f(x)=sinx+cosx, x in [0, pi]

Find the maximum and the minimum values,if any,of the function given by f(x)=x,x in(0,1)

Find the absolute maximum value and the absolute minimum value of the following functions is given intervals : f(x)=x^(2), x in [-2, 2]

Find the absolute maximum value and the absolute minimum value of f(x)=sin x+cos x in [0,pi]

Find the absolute maximum value and the absolute minimum value of the following functions is given intervals : f(x)=(x-1)^(2)+3, x in [-3, 1] .

Find the absolute maximum and the absolute minimum values of the following function in the given intervals: f(x)=(x-2)sqrt(x-1) in [1,9]

Find the absolute maximum value and the absolute minimum value of the following functions is given intervals : f(x)=4x-(1)/(2)x^(2), x in [-2, (9)/(2)]

Find the absolute maximum and absolute minimum vlaues of a function f given by f(x)=2x^(3)-15x^(2)+36x+3 on the interval [0,6] .