Home
Class 12
MATHS
Find the maximum or minimum values, if a...

Find the maximum or minimum values, if any, of the following funcitons without using the derivatives :
`f(x)=|sin4x+3|.`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum and minimum values of the function \( f(x) = |\sin(4x) + 3| \) without using derivatives, we can analyze the function step by step. ### Step 1: Understand the sine function The sine function, \( \sin(4x) \), oscillates between -1 and 1 for all values of \( x \). Therefore, we can express this mathematically as: \[ -1 \leq \sin(4x) \leq 1 \] ### Step 2: Shift the sine function Next, we add 3 to the sine function: \[ -1 + 3 \leq \sin(4x) + 3 \leq 1 + 3 \] This simplifies to: \[ 2 \leq \sin(4x) + 3 \leq 4 \] ### Step 3: Apply the absolute value Now, we need to consider the absolute value of \( \sin(4x) + 3 \): \[ f(x) = |\sin(4x) + 3| \] Since \( \sin(4x) + 3 \) is always positive (it ranges from 2 to 4), we can simplify the absolute value: \[ f(x) = \sin(4x) + 3 \] ### Step 4: Determine the range of \( f(x) \) From our previous step, we know: \[ 2 \leq \sin(4x) + 3 \leq 4 \] Thus, the function \( f(x) \) will take values between 2 and 4. ### Conclusion The minimum value of \( f(x) \) is 2, and the maximum value of \( f(x) \) is 4. **Final Answer:** - Minimum value of \( f(x) \) is 2. - Maximum value of \( f(x) \) is 4.
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 1 (e) (Long Answer Type Questions (I))|32 Videos
  • APPLICATIONS OF DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 1 (f) (Long Answer Type Questions (I))|24 Videos
  • APPLICATIONS OF DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 6 (d) (Long Answer Type Questions (I))|46 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Find the maximum or minimum values, if any, of the following funcitons without using the derivatives : f(x)=sin2x+5

Find the maximum or minimum values, if any, of the following funcitons without using the derivatives : f(x)=|x+2|-1

Find the maximum or minimum values, if any, of the following funcitons without using the derivatives : g(x)=x^(3)+1 .

Find the maximum or minimum values, if any, of the following funcitons without using the derivatives : g(x)=-|x-1|+3.

Find the maximum or minimum values, if any, of the following funcitons without using the derivatives : f(x)=x+1,.x in [-1, 1]

Find the maximum or minimum values, if any, of the following functions without using the derivatives : f(x)=(2x-1)^(2)+3

Find the maximum or minimum values, if any, of the following funcitons without using the derivatives : f(x)=-(x-1)^(2)+10

Find the maximum and minimum values, if any, of the following functions without using the derivatives : (i) f(x)=-(x-2)^(2)+3 (ii) f(x)=9x^(2)+12x+2.

Find the maximum and minimum value, if any, of the following function without using derivatives: (i) f(x)=(2x-1)^(2)+3 (ii) f(x)=16x^(2)-16x+28 (iii) f(x)=-|x+1|+3 (iv) f(x)=sin2x+5 (v ) f(x)=sin (sinx).

Find the maximum and mininum values, if any,of the function f(x)=|sin4x+3|