Home
Class 12
MATHS
Find the points of absolute maximum and ...

Find the points of absolute maximum and minimum of each of the following :
`y=sqrt5(sinx+(1)/(2)cos 2x),0lexle(pi)/(2).`

Text Solution

AI Generated Solution

The correct Answer is:
To find the points of absolute maximum and minimum of the function \( y = \sqrt{5} \left( \sin x + \frac{1}{2} \cos 2x \right) \) for \( 0 \leq x \leq \frac{\pi}{2} \), we will follow these steps: ### Step 1: Find the derivative of the function We start by differentiating the function \( y \) with respect to \( x \): \[ y = \sqrt{5} \left( \sin x + \frac{1}{2} \cos 2x \right) \] Using the chain rule and product rule, we differentiate: \[ \frac{dy}{dx} = \sqrt{5} \left( \cos x - \frac{1}{2} \cdot 2 \sin 2x \right) \] \[ = \sqrt{5} \left( \cos x - \sin 2x \right) \] ### Step 2: Set the derivative to zero to find critical points Next, we set the derivative equal to zero to find the critical points: \[ \sqrt{5} \left( \cos x - \sin 2x \right) = 0 \] This simplifies to: \[ \cos x - \sin 2x = 0 \] Using the double angle identity \( \sin 2x = 2 \sin x \cos x \), we rewrite the equation: \[ \cos x - 2 \sin x \cos x = 0 \] \[ \cos x (1 - 2 \sin x) = 0 \] ### Step 3: Solve for \( x \) From the equation above, we have two cases: 1. \( \cos x = 0 \) 2. \( 1 - 2 \sin x = 0 \) For \( \cos x = 0 \): - This occurs at \( x = \frac{\pi}{2} \) within the interval \( [0, \frac{\pi}{2}] \). For \( 1 - 2 \sin x = 0 \): - This gives \( \sin x = \frac{1}{2} \), which leads to \( x = \frac{\pi}{6} \). ### Step 4: Evaluate the function at critical points and endpoints We need to evaluate the function \( y \) at the critical points and the endpoints of the interval \( [0, \frac{\pi}{2}] \): 1. At \( x = 0 \): \[ y(0) = \sqrt{5} \left( \sin 0 + \frac{1}{2} \cos 0 \right) = \sqrt{5} \left( 0 + \frac{1}{2} \cdot 1 \right) = \frac{\sqrt{5}}{2} \] 2. At \( x = \frac{\pi}{6} \): \[ y\left(\frac{\pi}{6}\right) = \sqrt{5} \left( \sin \frac{\pi}{6} + \frac{1}{2} \cos \frac{\pi}{3} \right) = \sqrt{5} \left( \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} \right) = \sqrt{5} \left( \frac{1}{2} + \frac{1}{4} \right) = \sqrt{5} \cdot \frac{3}{4} = \frac{3\sqrt{5}}{4} \] 3. At \( x = \frac{\pi}{2} \): \[ y\left(\frac{\pi}{2}\right) = \sqrt{5} \left( \sin \frac{\pi}{2} + \frac{1}{2} \cos \pi \right) = \sqrt{5} \left( 1 + \frac{1}{2} \cdot (-1) \right) = \sqrt{5} \left( 1 - \frac{1}{2} \right) = \sqrt{5} \cdot \frac{1}{2} = \frac{\sqrt{5}}{2} \] ### Step 5: Determine absolute maximum and minimum Now we compare the values obtained: - \( y(0) = \frac{\sqrt{5}}{2} \) - \( y\left(\frac{\pi}{6}\right) = \frac{3\sqrt{5}}{4} \) - \( y\left(\frac{\pi}{2}\right) = \frac{\sqrt{5}}{2} \) The maximum value is \( \frac{3\sqrt{5}}{4} \) at \( x = \frac{\pi}{6} \) and the minimum value is \( \frac{\sqrt{5}}{2} \) at \( x = 0 \) and \( x = \frac{\pi}{2} \). ### Final Result - **Absolute Maximum**: \( \frac{3\sqrt{5}}{4} \) at \( x = \frac{\pi}{6} \) - **Absolute Minimum**: \( \frac{\sqrt{5}}{2} \) at \( x = 0 \) and \( x = \frac{\pi}{2} \)
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 1 (e) (Long Answer Type Questions (I))|32 Videos
  • APPLICATIONS OF DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 1 (f) (Long Answer Type Questions (I))|24 Videos
  • APPLICATIONS OF DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 6 (d) (Long Answer Type Questions (I))|46 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Find the points of absolute maximum and minimum of each of the following : y=x(1+10x-x^(2)),3 le x le 9

Find the points of absolute maximum and minimum of each of the following : y=(1)/(3)x^(3//2)-4x,0lexle64

Find the absolute maximum and minimum values of each of the following in the given intervals : y=2cos 2x-cos 4x, 0lexlepi.

Find the absolute maximum and minimum values of each of the following in the given intervals : f(x)=x^(3)-(5)/(2)x^(2)-2x+1, 0 le x le3.

Find the absolute maximum and minimum values of each of the following in the given intervals : f(x)=cos^(2)x+sinx" in "[0, pi] .

Find the absolute maximum and minimum values of each of the following in the given intervals : f(x)=sinx+cosx" in "[0, pi]

Find the absolute maximum and minimum values of each of the following in the given intervals : f(x)=x^(3)" in "[-2, 2] .

Find the absolute maximum and minimum values of each of the following in the given intervals : f(x)=2x^(3)-15x^(2)+36x+1" in "[1, 5]