Home
Class 12
MATHS
Find the maximum and minimum values of t...

Find the maximum and minimum values of the function :
`f(x)=2x^(3)-15x^(2)+36x+11.`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum and minimum values of the function \( f(x) = 2x^3 - 15x^2 + 36x + 11 \), we will follow these steps: ### Step 1: Find the first derivative We start by differentiating the function \( f(x) \). \[ f'(x) = \frac{d}{dx}(2x^3) - \frac{d}{dx}(15x^2) + \frac{d}{dx}(36x) + \frac{d}{dx}(11) \] Calculating the derivatives: \[ f'(x) = 6x^2 - 30x + 36 \] ### Step 2: Set the first derivative to zero To find the critical points, we set the first derivative equal to zero: \[ 6x^2 - 30x + 36 = 0 \] Dividing the entire equation by 6 simplifies it: \[ x^2 - 5x + 6 = 0 \] ### Step 3: Factor the quadratic equation Next, we factor the quadratic equation: \[ (x - 2)(x - 3) = 0 \] ### Step 4: Solve for critical points Setting each factor to zero gives us the critical points: \[ x - 2 = 0 \quad \Rightarrow \quad x = 2 \] \[ x - 3 = 0 \quad \Rightarrow \quad x = 3 \] ### Step 5: Find the second derivative To determine whether these critical points are maxima or minima, we find the second derivative: \[ f''(x) = \frac{d}{dx}(6x^2 - 30x + 36) = 12x - 30 \] ### Step 6: Evaluate the second derivative at critical points Now we evaluate \( f''(x) \) at the critical points \( x = 2 \) and \( x = 3 \): 1. For \( x = 2 \): \[ f''(2) = 12(2) - 30 = 24 - 30 = -6 \quad (\text{Negative, hence local maximum}) \] 2. For \( x = 3 \): \[ f''(3) = 12(3) - 30 = 36 - 30 = 6 \quad (\text{Positive, hence local minimum}) \] ### Step 7: Calculate the function values at critical points Now we calculate the function values at these critical points to find the maximum and minimum values. 1. For \( x = 2 \): \[ f(2) = 2(2^3) - 15(2^2) + 36(2) + 11 \] \[ = 2(8) - 15(4) + 72 + 11 \] \[ = 16 - 60 + 72 + 11 = 39 \] 2. For \( x = 3 \): \[ f(3) = 2(3^3) - 15(3^2) + 36(3) + 11 \] \[ = 2(27) - 15(9) + 108 + 11 \] \[ = 54 - 135 + 108 + 11 = 38 \] ### Conclusion Thus, the maximum value of the function is \( f(2) = 39 \) at \( x = 2 \) and the minimum value is \( f(3) = 38 \) at \( x = 3 \).
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 1 (e) (Long Answer Type Questions (I))|32 Videos
  • APPLICATIONS OF DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 1 (f) (Long Answer Type Questions (I))|24 Videos
  • APPLICATIONS OF DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 6 (d) (Long Answer Type Questions (I))|46 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Find the maximum and minimum values of the function f(x)=tan x-2x

Find the maximum and minimum values of the function f(x)=(4)/(x+2)+x

Determine the maximum and minimum values of the function f(x) = 2x^(3) - 21 x^(2) + 36x-20

Find the maximum and minimum values of the following functions. f(x)=2x^(3)-15x^(2)+36x+10

Find the maximum and minimum values of the function y=4x^3 -15x^2 +12x – 2

Find the maximum and minimum values of the function y=4x^3-3x^2-6x+1

Find all the points of local maxima and minima and the corresponding maximum and minimum values of the function f(x)=2x^(3)-21x^(2)+36x-20

Find all the points of local maxima and minima and the corresponding maximum and minimum values of the function f(x)=2x^(3)-21x^(2)+36x-20

Find the maximum and the minimum value of the function y=x^(3)+6x^(2)-15x+5

Find the maximum or minimum values of the function. y=9-(x-3)^(2)