Home
Class 12
MATHS
Find the points of local maxima and loca...

Find the points of local maxima and local minima, if any, of the following functions. Find also the local maximum and local minimum values :
`f(x)=xsqrt(1-x), x gt0`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the points of local maxima and minima for the function \( f(x) = x \sqrt{1 - x} \) where \( x > 0 \), we will follow these steps: ### Step 1: Find the derivative of the function To find the critical points, we first need to compute the derivative \( f'(x) \). Using the product rule: \[ f(x) = x \cdot (1 - x)^{1/2} \] Let \( u = x \) and \( v = (1 - x)^{1/2} \). Then, \[ f'(x) = u'v + uv' \] where \( u' = 1 \) and \( v' = \frac{1}{2}(1 - x)^{-1/2}(-1) = -\frac{1}{2\sqrt{1 - x}} \). Now substituting these into the product rule: \[ f'(x) = 1 \cdot (1 - x)^{1/2} + x \cdot \left(-\frac{1}{2\sqrt{1 - x}}\right) \] \[ = \sqrt{1 - x} - \frac{x}{2\sqrt{1 - x}} \] ### Step 2: Set the derivative equal to zero To find the critical points, we set \( f'(x) = 0 \): \[ \sqrt{1 - x} - \frac{x}{2\sqrt{1 - x}} = 0 \] Multiplying through by \( 2\sqrt{1 - x} \) to eliminate the fraction: \[ 2(1 - x) - x = 0 \] \[ 2 - 2x - x = 0 \implies 2 - 3x = 0 \implies 3x = 2 \implies x = \frac{2}{3} \] ### Step 3: Determine if it is a maximum or minimum Next, we need to find the second derivative \( f''(x) \) to determine whether this critical point is a maximum or minimum. Using the quotient rule on \( f'(x) \): \[ f'(x) = \frac{2(1 - x) - x}{2\sqrt{1 - x}} = \frac{2 - 3x}{2\sqrt{1 - x}} \] Now, we differentiate this again: Let \( u = 2 - 3x \) and \( v = 2\sqrt{1 - x} \): \[ f''(x) = \frac{u'v - uv'}{v^2} \] Calculating \( u' = -3 \) and \( v' = \frac{1}{2}(1 - x)^{-1/2}(-1) = -\frac{1}{2\sqrt{1 - x}} \): \[ f''(x) = \frac{(-3)(2\sqrt{1 - x}) - (2 - 3x)\left(-\frac{1}{2\sqrt{1 - x}}\right)}{(2\sqrt{1 - x})^2} \] Substituting \( x = \frac{2}{3} \): \[ f''\left(\frac{2}{3}\right) = \frac{-6\sqrt{1 - \frac{2}{3}} + (2 - 3 \cdot \frac{2}{3})\left(-\frac{1}{2\sqrt{1 - \frac{2}{3}}}\right)}{(2\sqrt{1 - \frac{2}{3}})^2} \] Calculating \( 1 - \frac{2}{3} = \frac{1}{3} \): \[ = \frac{-6\sqrt{\frac{1}{3}} + 0}{(2\sqrt{\frac{1}{3}})^2} \] Since \( f''\left(\frac{2}{3}\right) < 0 \), it indicates a local maximum. ### Step 4: Find the maximum value Now we calculate the maximum value of \( f \) at \( x = \frac{2}{3} \): \[ f\left(\frac{2}{3}\right) = \frac{2}{3}\sqrt{1 - \frac{2}{3}} = \frac{2}{3}\sqrt{\frac{1}{3}} = \frac{2}{3} \cdot \frac{1}{\sqrt{3}} = \frac{2}{3\sqrt{3}} = \frac{2\sqrt{3}}{9} \] ### Final Result - Local maximum point: \( x = \frac{2}{3} \) - Local maximum value: \( f\left(\frac{2}{3}\right) = \frac{2\sqrt{3}}{9} \) - There are no local minima in the given domain \( x > 0 \).
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 1 (f) (Long Answer Type Questions (I))|24 Videos
  • APPLICATIONS OF DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 1 (f) (Long Answer Type Questions (II))|33 Videos
  • APPLICATIONS OF DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 1 (e) (Short Answer Type Questions)|16 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Find the points of local maxima and local minima, if any, of the following functions. Find also the local maximum and local minimum values : f(x)=x^(2)

Find the points of local maxima and local minima, if any, of the following functions. Find also the local maximum and local minimum values : f(x)=x^(3)-3x+3.

Find the points of local maxima and local minima, if any, of the following functions. Find also the local maximum and local minimum values : f(x)=x^(3)-3x.

Find the points of local maxima and local minima, if any, of the following functions. Find also the local maximum and local minimum values : g(x)=x^(3)−3x

Find the points of local maxima and local minima, if any, of the following functions. Find also the local maximum and local minimum values : f(x)=cosx, 0ltxltpi

Find the points of local maxima and local minima, if any, of the following functions. Find also the local maximum and local minimum values : g(x)=(1)/(x^(2)+2)

Find the points of local maxima and local minima, if any, of the following functions. Find also the local maximum and local minimum values : f(x)=x^(3)-12x^(2)+36x-4

Find the points of local maxima and local minima, if any, of the following functions. Find also the local maximum and local minimum values : f(x)=-x+2sinx,0lexle2pi

Find the points of local maxima and local minima, if any, of the following functions. Find also the local maximum and local minimum values : g(x)=(x)/(5)+(5)/(x),x > 0,

Find the points of local maxima and local minima, if any, of the following functions. Find also the local maximum and local minimum values : f(x)=sinx+cosx, 0 lt xlt(pi)/(2)

MODERN PUBLICATION-APPLICATIONS OF DERIVATIVES-EXERCISE 1 (e) (Long Answer Type Questions (I))
  1. Find the maximum value and the minimum value and the minimum value of ...

    Text Solution

    |

  2. Find the points of local maxima and local minima, if any, of the follo...

    Text Solution

    |

  3. Find the points of local maxima and local minima, if any, of the follo...

    Text Solution

    |

  4. Find the points of local maxima and local minima, if any, of the follo...

    Text Solution

    |

  5. Find the points of local maxima and local minima, if any, of the follo...

    Text Solution

    |

  6. Find the points of local maxima and local minima, if any, of the follo...

    Text Solution

    |

  7. Find the local maxima and local minima, if any, of the followig functi...

    Text Solution

    |

  8. Find the points of local maxima and local minima, if any, of the follo...

    Text Solution

    |

  9. Find the points of local maxima and local minima, if any, of the follo...

    Text Solution

    |

  10. Find the points of local maxima and local minima, if any, of the follo...

    Text Solution

    |

  11. Find the points of local maxima and local minima, if any, of the follo...

    Text Solution

    |

  12. Find the points of local maxima and local minima, if any, of the follo...

    Text Solution

    |

  13. Find the points of local maxima and local minima, if any, of the follo...

    Text Solution

    |

  14. Find the points of local maxima and local minima, if any, of the follo...

    Text Solution

    |

  15. Find the points of local maxima and local minima, if any, of the follo...

    Text Solution

    |

  16. Find the points of local maxima and local minima, if any, of the follo...

    Text Solution

    |

  17. Find the points of local maxima and local minima, if any, of the follo...

    Text Solution

    |

  18. Prove that (1/x)^(x) has maximum value is(e)^(1/e).

    Text Solution

    |

  19. The curve y=ax^(2)+bx has a turning point at (1, -2). Find the values ...

    Text Solution

    |

  20. If y=(a x-b)/((x-1)(x-4)) has a turning point P(2,-1), find the value ...

    Text Solution

    |