Home
Class 12
MATHS
Find the points of local maxima and loca...

Find the points of local maxima and local minima, if any, of the following functions. Find also the local maximum and local minimum values :
`f(x)=sin^(4)x+cos^(4)x,0ltxlt(pi)/(2).`

Text Solution

AI Generated Solution

The correct Answer is:
To find the points of local maxima and minima of the function \( f(x) = \sin^4 x + \cos^4 x \) for \( 0 < x < \frac{\pi}{2} \), we will follow these steps: ### Step 1: Find the first derivative \( f'(x) \) We start by differentiating the function: \[ f'(x) = \frac{d}{dx}(\sin^4 x) + \frac{d}{dx}(\cos^4 x) \] Using the chain rule, we have: \[ \frac{d}{dx}(\sin^4 x) = 4 \sin^3 x \cdot \cos x \] \[ \frac{d}{dx}(\cos^4 x) = 4 \cos^3 x \cdot (-\sin x) = -4 \cos^3 x \cdot \sin x \] So, \[ f'(x) = 4 \sin^3 x \cos x - 4 \cos^3 x \sin x \] Factoring out \( 4 \sin x \cos x \): \[ f'(x) = 4 \sin x \cos x (\sin^2 x - \cos^2 x) \] ### Step 2: Set the first derivative to zero To find critical points, we set \( f'(x) = 0 \): \[ 4 \sin x \cos x (\sin^2 x - \cos^2 x) = 0 \] This gives us two cases to consider: 1. \( \sin x = 0 \) 2. \( \sin^2 x - \cos^2 x = 0 \) ### Step 3: Solve for critical points 1. **From \( \sin x = 0 \)**: - In the interval \( 0 < x < \frac{\pi}{2} \), \( \sin x = 0 \) does not yield any valid solutions. 2. **From \( \sin^2 x - \cos^2 x = 0 \)**: - This simplifies to \( \sin^2 x = \cos^2 x \) or \( \tan^2 x = 1 \). - Thus, \( \tan x = 1 \) implies \( x = \frac{\pi}{4} \). ### Step 4: Determine the nature of the critical point To determine whether \( x = \frac{\pi}{4} \) is a local maximum or minimum, we need to find the second derivative \( f''(x) \). ### Step 5: Find the second derivative \( f''(x) \) Differentiating \( f'(x) \): \[ f'(x) = 4 \sin x \cos x (\sin^2 x - \cos^2 x) \] Using the product rule and simplifying, we find: \[ f''(x) = 4 \left( \cos^2 x (\sin^2 x - \cos^2 x) + \sin^2 x \cdot 2\sin x \cos x - \sin^2 x \cdot 2\sin x \cos x \right) \] Evaluating at \( x = \frac{\pi}{4} \): \[ f''\left(\frac{\pi}{4}\right) = 4 \left( \cos^2\left(\frac{\pi}{4}\right) \cdot 0 + \sin^2\left(\frac{\pi}{4}\right) \cdot 2\sin\left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{4}\right) \right) \] Since \( \sin\left(\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \): \[ f''\left(\frac{\pi}{4}\right) = 4 \left( 0 + \left(\frac{1}{\sqrt{2}}\right)^2 \cdot 2 \cdot \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} \right) = 4 \cdot \frac{1}{2} \cdot 2 \cdot \frac{1}{2} = 2 > 0 \] Since \( f''\left(\frac{\pi}{4}\right) > 0 \), \( x = \frac{\pi}{4} \) is a local minimum. ### Step 6: Find the local minimum value Now, we calculate \( f\left(\frac{\pi}{4}\right) \): \[ f\left(\frac{\pi}{4}\right) = \sin^4\left(\frac{\pi}{4}\right) + \cos^4\left(\frac{\pi}{4}\right) = 2 \left(\frac{1}{\sqrt{2}}\right)^4 = 2 \cdot \frac{1}{4} = \frac{1}{2} \] ### Conclusion The function \( f(x) = \sin^4 x + \cos^4 x \) has a local minimum at \( x = \frac{\pi}{4} \) with a minimum value of \( \frac{1}{2} \).
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 1 (f) (Long Answer Type Questions (I))|24 Videos
  • APPLICATIONS OF DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 1 (f) (Long Answer Type Questions (II))|33 Videos
  • APPLICATIONS OF DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 1 (e) (Short Answer Type Questions)|16 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Find the points of local maxima and local minima, if any, of the following functions. Find also the local maximum and local minimum values : f(x)=x^(2)

Find the points of local maxima and local minima, if any, of the following functions. Find also the local maximum and local minimum values : f(x)=x^(3)-3x+3.

Find the points of local maxima and local minima, if any, of the following functions. Find also the local maximum and local minimum values : f(x)=x^(3)-3x.

Find the points of local maxima and local minima, if any, of the following functions. Find also the local maximum and local minimum values : g(x)=x^(3)−3x

Find the points of local maxima and local minima, if any, of the following functions. Find also the local maximum and local minimum values : f(x)=sinx+cosx, 0 lt xlt(pi)/(2)

Find the points of local maxima and local minima, if any, of the following functions. Find also the local maximum and local minimum values : f(x)=x^(3)-12x^(2)+36x-4

Find the points of local maxima and local minima, if any, of the following functions. Find also the local maximum and local minimum values : f(x)=cosx, 0ltxltpi

Find the points of local maxima and local minima, if any, of the following functions. Find also the local maximum and local minimum values : g(x)=(1)/(x^(2)+2)

Find the points of local maxima and local minima, if any, of the following functions. Find also the local maximum and local minimum values : f(x)=xsqrt(1-x), x gt0 .

Find the points of local maxima and local minima, if any, of the following functions. Find also the local maximum and local minimum values : f(x)=-x+2sinx,0lexle2pi

MODERN PUBLICATION-APPLICATIONS OF DERIVATIVES-EXERCISE 1 (e) (Long Answer Type Questions (I))
  1. Find the maximum value and the minimum value and the minimum value of ...

    Text Solution

    |

  2. Find the points of local maxima and local minima, if any, of the follo...

    Text Solution

    |

  3. Find the points of local maxima and local minima, if any, of the follo...

    Text Solution

    |

  4. Find the points of local maxima and local minima, if any, of the follo...

    Text Solution

    |

  5. Find the points of local maxima and local minima, if any, of the follo...

    Text Solution

    |

  6. Find the points of local maxima and local minima, if any, of the follo...

    Text Solution

    |

  7. Find the local maxima and local minima, if any, of the followig functi...

    Text Solution

    |

  8. Find the points of local maxima and local minima, if any, of the follo...

    Text Solution

    |

  9. Find the points of local maxima and local minima, if any, of the follo...

    Text Solution

    |

  10. Find the points of local maxima and local minima, if any, of the follo...

    Text Solution

    |

  11. Find the points of local maxima and local minima, if any, of the follo...

    Text Solution

    |

  12. Find the points of local maxima and local minima, if any, of the follo...

    Text Solution

    |

  13. Find the points of local maxima and local minima, if any, of the follo...

    Text Solution

    |

  14. Find the points of local maxima and local minima, if any, of the follo...

    Text Solution

    |

  15. Find the points of local maxima and local minima, if any, of the follo...

    Text Solution

    |

  16. Find the points of local maxima and local minima, if any, of the follo...

    Text Solution

    |

  17. Find the points of local maxima and local minima, if any, of the follo...

    Text Solution

    |

  18. Prove that (1/x)^(x) has maximum value is(e)^(1/e).

    Text Solution

    |

  19. The curve y=ax^(2)+bx has a turning point at (1, -2). Find the values ...

    Text Solution

    |

  20. If y=(a x-b)/((x-1)(x-4)) has a turning point P(2,-1), find the value ...

    Text Solution

    |