Home
Class 12
MATHS
A rectangular sheet of tin 45 cm by 2...

A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, by cutting off square from each corner and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum ?

Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    MODERN PUBLICATION|Exercise Misellaneous Exercise on Chapter (6)|25 Videos
  • APPLICATIONS OF DERIVATIVES

    MODERN PUBLICATION|Exercise Exercise|15 Videos
  • APPLICATIONS OF DERIVATIVES

    MODERN PUBLICATION|Exercise NCERT - FILE (Question from NCERT Book) (Exercise 6.4)|23 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

A rectangular sheet of tin 45cm by 24cm is to be made into a box without top,by cutting off squares from each corners and folding up the flaps.What should be the side of the square to be cut off so that the volume of the box is maximum possible?

A rectangular sheet of tin 45cm by 24cm is to be made into a box without top,by cutting off square from each corner and folding up the flaps.What should be the side of the square to be cut off so that the volume of the box is maximum?

A square piece of tin of side 24 cm is to be made into a box without top by cutting a square from each corner and foding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum ? Also, find this maximum volume.

A square piece of tin of side 18cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box.What should be the side of the square to be cut off so that the volume of the box is maximum? Also,find the maximum volume.

A square piece of tin of side 24 cm is to be made into a box without top by cutting a square from each and folding up the flaps to form a box. What should be the side of the square to be cut off so that the volume of the box is maximum ? Also, find the maximum volume.

A square piece of tin of side 18cm is to be made into a box without top,by cutting a square from each corner and folding up the flaps to form the box.What should be the side of the square to be cut off so that the volume of the box is the maximum possible?

A square piece of tin of side 12 cm is to be made into a box without a lid by cutting a square from each corner and folding up the flaps to form the sides. What should be the side of the square to be cut off so that the volume of the box is maximum ? Also, find this maximum volume

A rectangular sheet of tin 58 cmxx44cm is to be made into an open box by cutting off equal squares from the corners and folding up the flaps.What should be the volume of box if the surface area of box is 2452 cm^(2) ?

An open box is to be made of square sheet of tin with side 20 cm, by cutting off small squares from each corner and foding the flaps. Find the side of small square, which is to be cut off, so that volume of box is maximum.

A box is to be made from a sheet 12times12 sq.cm, by cutting equals squares from the four corners and turning up its sides. Find the length of the side of the square to be cut out, in order to obtain a box of the largest possible volume?

MODERN PUBLICATION-APPLICATIONS OF DERIVATIVES-NCERT - FILE (Question from NCERT Book) (Exercise 6.5)
  1. Find the maximum value of 2x^3-24 x+107 in the interval [1,\ 3] . F...

    Text Solution

    |

  2. It is given that at x=1 , the function x^4-62 x^2+a x+9 attains its ma...

    Text Solution

    |

  3. Find the maximum and minimum values of x + s in 2xon [0,2pi].

    Text Solution

    |

  4. Find the two numbers with maximum product and whose sum is 24.

    Text Solution

    |

  5. Find two positive numbers x and y such that x + y = 60and x y^3is max...

    Text Solution

    |

  6. Find two positive number m and n such that their sum is 35 and the pro...

    Text Solution

    |

  7. Find two positive numbers whose sum is 16 and the sum of whose cube...

    Text Solution

    |

  8. A square piece of tin of side 18 cm is to be made into a box withou...

    Text Solution

    |

  9. A rectangular sheet of tin 45 cm by 24 cm is to be made into a box ...

    Text Solution

    |

  10. Show that of all the rectangles inscribed in a given fixed circle, ...

    Text Solution

    |

  11. Show that the right circular cylinder of given surface and maximum ...

    Text Solution

    |

  12. Of all the closed cylindrical cans (right circular), of a given volume...

    Text Solution

    |

  13. A wire of length 28 m is to be cut into two pieces. One of the piec...

    Text Solution

    |

  14. Prove that the volume of the largest cone, that can be inscribed in...

    Text Solution

    |

  15. Show that the right-circular cone of least curved surface and given...

    Text Solution

    |

  16. Show that the semi-vertical angle of the cone of the maximum volume a...

    Text Solution

    |

  17. Show that semi-vertical angle of right circular cone of given surface...

    Text Solution

    |

  18. The point on the curve x^2=2ywhich is nearest to the point (0, 5) is(A...

    Text Solution

    |

  19. For all real values of x, the maximum value of (1-x+x^(2))/(1+x+x^(2))...

    Text Solution

    |

  20. The maximum value of [x(x-1)+1]^(1//3), 0lexle1 is :

    Text Solution

    |