Home
Class 12
MATHS
The sum of the perimeter of a circle and...

The sum of the perimeter of a circle and square is k, where k is some constant. Prove that the sum of their areas is least when the side of square is double the radius of the circle.

Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    MODERN PUBLICATION|Exercise Exercise|15 Videos
  • APPLICATIONS OF DERIVATIVES

    MODERN PUBLICATION|Exercise Revision Exercise|35 Videos
  • APPLICATIONS OF DERIVATIVES

    MODERN PUBLICATION|Exercise NCERT - FILE (Question from NCERT Book) (Exercise 6.5)|48 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

The sum of the perimeters of a circle and a square is k, where k is some constant.Prove that the sum of their areas is least when the side of the square is double the radius of the circle.

The sum of perimeter of a square and circumference of a circle is given. Prove that the sum of their areas will be minimum when the side of square is equal to the diameter of the circle.

If the side of a square is doubled, then the area of the square

Given the sum of the perimeters of a square and a circle,show that the sum of their areas is least when one side of the square is equal to diameter of the circle.

Area of a square is doubled if the side of the square is doubled.

A wire of length l is cut into two parts. One part is bent into a circle and the other into a square. Prove that the sum of the areas of the circle and the square is the least, if the radius of the circle is half of the side of the square.

The area of a square is equal to the area of a circle. What is the ratio between the side of the square and the radius of the circle?

A circle and a square have same area. The ratio of the side of the square to the radius of the circle will be :

The areas of a circle and a square are same. The ratio of the side of the square to the radius of the circle is

MODERN PUBLICATION-APPLICATIONS OF DERIVATIVES-Misellaneous Exercise on Chapter (6)
  1. Show that the normal at any point theta to the curve x=acostheta+at...

    Text Solution

    |

  2. Find the intervals in which the function f given by f(x)=(4sinx-2x-x c...

    Text Solution

    |

  3. Find the intervals in which the function f given by f(x)=x^3+1/(x^3), ...

    Text Solution

    |

  4. Find the maximum are of the isosceles triangle inscribed in the ell...

    Text Solution

    |

  5. A tank with rectangular base and rectangular sides, open at the top...

    Text Solution

    |

  6. The sum of the perimeter of a circle and square is k, where k is so...

    Text Solution

    |

  7. A window is in the form of a rectangle surmounted by a semicircular...

    Text Solution

    |

  8. A point on the hypotenuse of a triangle is at distance a and b from t...

    Text Solution

    |

  9. Find the points at which the function f given by f(x)=(x-2)^4(x+1)^3 h...

    Text Solution

    |

  10. Find the absolute maximum and minimum values of the function f give...

    Text Solution

    |

  11. Show that the altitude of the right circular cone of maximum volume...

    Text Solution

    |

  12. Let f be a function defined on [a, b] such that f^(prime)(x)>0, for al...

    Text Solution

    |

  13. Show that the height of the cylinder of maximum volume that can be ...

    Text Solution

    |

  14. Show that height of the cylinder of greatest volume which can be insc...

    Text Solution

    |

  15. A cylindrical tank of radius 10 m is being filled with wheat at the r...

    Text Solution

    |

  16. The slope of the tangent to the curve x=t^(2)+3t-8,y=2t^(2) -2t -5 at...

    Text Solution

    |

  17. The line y = m x + 1is a tangent to the curve y^2=4xif the value of m...

    Text Solution

    |

  18. The normal at the point (1,1) on the curve 2y+x^2=3is(A) x + y = 0 (B)...

    Text Solution

    |

  19. The normal to the curve x^(2)=4y passing (1, 2) is :

    Text Solution

    |

  20. The points on the curve 9y^2=x^3, where the normal to the curve makes ...

    Text Solution

    |