Home
Class 12
MATHS
Show that the height of the cylinder ...

Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius `R` is `(2R)/(sqrt(3))` .

Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    MODERN PUBLICATION|Exercise Exercise|15 Videos
  • APPLICATIONS OF DERIVATIVES

    MODERN PUBLICATION|Exercise Revision Exercise|35 Videos
  • APPLICATIONS OF DERIVATIVES

    MODERN PUBLICATION|Exercise NCERT - FILE (Question from NCERT Book) (Exercise 6.5)|48 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is 2(R)/(sqrt(3)) .Also find maximum volume.

The height of the cylinder of maximum volume which can be inscribed in a sphere of radius 3cm is

Show that the height of the cone of maximum volume that can be inscribed in a sphere of radius 12cm is 16cm.

Show that the height of the cone of maximum vvolume that can be inscribed in a sphere of radius 12cm is 16cm.

The height of the cylinder of the greatest volume that can be inscribed in a sphere of radius 3 is

Show that the height of the cylinder of maximum volume that can be inscribed in a cone of height h is (1)/(3)h

Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius R is (4R)/(3) .

Find the height of right circular cylinder of maximum volume that can be inscribed in a sphere of radius 10sqrt3cm .

MODERN PUBLICATION-APPLICATIONS OF DERIVATIVES-Misellaneous Exercise on Chapter (6)
  1. Show that the normal at any point theta to the curve x=acostheta+at...

    Text Solution

    |

  2. Find the intervals in which the function f given by f(x)=(4sinx-2x-x c...

    Text Solution

    |

  3. Find the intervals in which the function f given by f(x)=x^3+1/(x^3), ...

    Text Solution

    |

  4. Find the maximum are of the isosceles triangle inscribed in the ell...

    Text Solution

    |

  5. A tank with rectangular base and rectangular sides, open at the top...

    Text Solution

    |

  6. The sum of the perimeter of a circle and square is k, where k is so...

    Text Solution

    |

  7. A window is in the form of a rectangle surmounted by a semicircular...

    Text Solution

    |

  8. A point on the hypotenuse of a triangle is at distance a and b from t...

    Text Solution

    |

  9. Find the points at which the function f given by f(x)=(x-2)^4(x+1)^3 h...

    Text Solution

    |

  10. Find the absolute maximum and minimum values of the function f give...

    Text Solution

    |

  11. Show that the altitude of the right circular cone of maximum volume...

    Text Solution

    |

  12. Let f be a function defined on [a, b] such that f^(prime)(x)>0, for al...

    Text Solution

    |

  13. Show that the height of the cylinder of maximum volume that can be ...

    Text Solution

    |

  14. Show that height of the cylinder of greatest volume which can be insc...

    Text Solution

    |

  15. A cylindrical tank of radius 10 m is being filled with wheat at the r...

    Text Solution

    |

  16. The slope of the tangent to the curve x=t^(2)+3t-8,y=2t^(2) -2t -5 at...

    Text Solution

    |

  17. The line y = m x + 1is a tangent to the curve y^2=4xif the value of m...

    Text Solution

    |

  18. The normal at the point (1,1) on the curve 2y+x^2=3is(A) x + y = 0 (B)...

    Text Solution

    |

  19. The normal to the curve x^(2)=4y passing (1, 2) is :

    Text Solution

    |

  20. The points on the curve 9y^2=x^3, where the normal to the curve makes ...

    Text Solution

    |