Home
Class 12
MATHS
Integrate : int (1-sinx)/(cos^2x)dx....

Integrate : `int (1-sinx)/(cos^2x)dx.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{1 - \sin x}{\cos^2 x} \, dx\), we can break it down into simpler parts. Here’s a step-by-step solution: ### Step 1: Rewrite the Integral We can separate the integral into two parts: \[ \int \frac{1 - \sin x}{\cos^2 x} \, dx = \int \frac{1}{\cos^2 x} \, dx - \int \frac{\sin x}{\cos^2 x} \, dx \] ### Step 2: Integrate the First Part The first integral, \(\int \frac{1}{\cos^2 x} \, dx\), is known to be: \[ \int \sec^2 x \, dx = \tan x + C_1 \] ### Step 3: Integrate the Second Part For the second integral, \(\int \frac{\sin x}{\cos^2 x} \, dx\), we can use the substitution method. Let: \[ u = \cos x \implies du = -\sin x \, dx \implies -du = \sin x \, dx \] Thus, the integral becomes: \[ \int \frac{\sin x}{\cos^2 x} \, dx = -\int \frac{1}{u^2} \, du = -\left(-\frac{1}{u}\right) + C_2 = \frac{1}{\cos x} + C_2 = \sec x + C_2 \] ### Step 4: Combine the Results Now, we can combine the results of both integrals: \[ \int \frac{1 - \sin x}{\cos^2 x} \, dx = \tan x - \sec x + C \] where \(C = C_1 + C_2\) is the constant of integration. ### Final Answer Thus, the final answer is: \[ \int \frac{1 - \sin x}{\cos^2 x} \, dx = \tan x - \sec x + C \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(a) SHORT ANSWER TYPE|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(a) LONG ANSWER TYPE QUESTION|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int(sinx)/(1+cos^2x)dx

int (sinx)/(1-cos x)dx

Knowledge Check

  • int(sinx)/(1+cos^2x)dx=

    A
    `2cot^(-1)(cosx)+c`
    B
    `2tan^(-1)(cosx)+c`
    C
    `cot^(-1)(cosx)+c`
    D
    `tan^(-1)(cosx)+c`
  • int ((1- sinx))/(cos^(2)x) dx= ?

    A
    `tanx +sec x + C`
    B
    `tanx - sec x + C`
    C
    `-tanx + sec x + C`
    D
    `-tanx - sec x + C`
  • Similar Questions

    Explore conceptually related problems

    int sinx/(1-cos^2x)dx

    Integrate int(x-sin x)/(1-cos x)dx

    Evaluate the following integrals: int (1-sinx )/(x+cos x) dx

    int(sinx)/((1+cos^(2)x))dx

    int (1-sinx )/ (1-cos x) dx=?

    Evaluate the following integrals : int(1-cos2x)/(1+cos2x)dx