Home
Class 12
MATHS
Integrate the following w.r.t x: (x^2+...

Integrate the following w.r.t x:
`(x^2+3x+1)/sqrt(1-x^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{x^2 + 3x + 1}{\sqrt{1 - x^2}} \, dx, \] we will use the substitution \( x = \sin \theta \). This substitution simplifies the square root in the denominator. ### Step 1: Substitute \( x = \sin \theta \) Differentiating both sides, we have: \[ dx = \cos \theta \, d\theta. \] Now, substituting \( x = \sin \theta \) into the integral: \[ \sqrt{1 - x^2} = \sqrt{1 - \sin^2 \theta} = \sqrt{\cos^2 \theta} = \cos \theta. \] Thus, the integral becomes: \[ \int \frac{\sin^2 \theta + 3\sin \theta + 1}{\cos \theta} \cos \theta \, d\theta = \int (\sin^2 \theta + 3\sin \theta + 1) \, d\theta. \] ### Step 2: Simplify the Integral Now we can break this integral into three separate integrals: \[ \int \sin^2 \theta \, d\theta + 3 \int \sin \theta \, d\theta + \int 1 \, d\theta. \] ### Step 3: Integrate Each Term 1. **Integrate \( \sin^2 \theta \)**: We use the identity \( \sin^2 \theta = \frac{1 - \cos 2\theta}{2} \): \[ \int \sin^2 \theta \, d\theta = \int \frac{1 - \cos 2\theta}{2} \, d\theta = \frac{1}{2} \left( \theta - \frac{1}{2} \sin 2\theta \right) + C_1. \] 2. **Integrate \( 3 \sin \theta \)**: \[ 3 \int \sin \theta \, d\theta = -3 \cos \theta + C_2. \] 3. **Integrate \( 1 \)**: \[ \int 1 \, d\theta = \theta + C_3. \] ### Step 4: Combine the Results Combining all these results, we have: \[ \int \sin^2 \theta \, d\theta + 3 \int \sin \theta \, d\theta + \int 1 \, d\theta = \frac{1}{2} \left( \theta - \frac{1}{2} \sin 2\theta \right) - 3 \cos \theta + \theta + C. \] This simplifies to: \[ \frac{3}{2} \theta - 3 \cos \theta - \frac{1}{4} \sin 2\theta + C. \] ### Step 5: Substitute Back to \( x \) Recall that \( \theta = \sin^{-1}(x) \) and \( \cos \theta = \sqrt{1 - x^2} \). Also, \( \sin 2\theta = 2 \sin \theta \cos \theta = 2x\sqrt{1 - x^2} \). Thus, substituting back, we get: \[ \frac{3}{2} \sin^{-1}(x) - 3\sqrt{1 - x^2} - \frac{1}{4}(2x\sqrt{1 - x^2}) + C. \] This simplifies to: \[ \frac{3}{2} \sin^{-1}(x) - 3\sqrt{1 - x^2} - \frac{1}{2} x\sqrt{1 - x^2} + C. \] ### Final Answer So the final result of the integral is: \[ \int \frac{x^2 + 3x + 1}{\sqrt{1 - x^2}} \, dx = \frac{3}{2} \sin^{-1}(x) - 3\sqrt{1 - x^2} - \frac{1}{2} x\sqrt{1 - x^2} + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(a) SHORT ANSWER TYPE|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(a) LONG ANSWER TYPE QUESTION|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Integrate the following w.r.t.x. x log x

Integrate the following w.r.t.x. x sin^(2)x

Integrate the following w.r.t.x. e^(x).cos x

Integrate the following w.r.t.x. (x sin^(-1)x)/(sqrt(1-x^(2)))

Integrate the following w.r.t.x: (1)/(x^(2)sqrt(a^(2)+x^(2)))

Integrate the following w.r.t.x. (1)/(sqrt((x-2)(x-3)))

Integrate the following w.r.t.x. (x^(2)+2x+6)/((x+1)(x^(2)+4))

Integrate the following w.r.t.x. (1)/(x^(2)+4x+8)

Integrate the following w.r.t.x: (2x+3)/(2x^(2)+3x-1)

Integrate the following w.r.t.x : (1)/(sqrt(3x+5)-sqrt(3x+2))

MODERN PUBLICATION-INTEGRALS-COMPETITION FILE
  1. Integrate the following w.r.t x: (x^2+3x+1)/sqrt(1-x^2)

    Text Solution

    |

  2. Let I=int0^1 (sinx)/sqrtx dx and J=int0^1 (cos x)/sqrtx dx. Then which...

    Text Solution

    |

  3. The value of sqrt(2)int(sinx)/(sin(x-(pi)/(4)))dx , is

    Text Solution

    |

  4. int(0)^(pi)[cotx]dx, where [.] denotes the greatest integer function, ...

    Text Solution

    |

  5. Let p(x) be a function defined on R such that p'(x)=p'(1-x) for all x ...

    Text Solution

    |

  6. The value of int0^1 (8log(1+x))/(1+x^2) dxis:

    Text Solution

    |

  7. For x epsilon(0,(5pi)/2), definite f(x)=int(0)^(x)sqrt(t) sin t dt. T...

    Text Solution

    |

  8. Let [] denote the greatest integet function then the value int0^1.5 x[...

    Text Solution

    |

  9. If the integral int (5 tanx)/(tanx-2) dx=x+a log |sin x-2 cosx|+c, the...

    Text Solution

    |

  10. If g(x)=int(0)^(x)cos^(4)t dt, then g(x+pi) equals

    Text Solution

    |

  11. If int f(x)dx=psi(x), then int x^5f(x^3)dx

    Text Solution

    |

  12. The intercepts on x-axis made by tangents to the curve, y=int0^x|t|...

    Text Solution

    |

  13. The integral int(1+x-1/x)e^(x+1/x)dx is equal to

    Text Solution

    |

  14. The integral int(0)^(pi)sqrt(1+4"sin"^2(x)/(2)-4"sin"(x)/(2)) dx is e...

    Text Solution

    |

  15. "The integral " int(dx)/(x^(2)(x^(4)+1)^(3//4))" equals"

    Text Solution

    |

  16. The integral int2^4(logx^2)/(logx^2+log(36-12 x+x^2)dx is equal to:...

    Text Solution

    |

  17. The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to ...

    Text Solution

    |

  18. underset (n rarr infty )(lim) [((n+1)(n+2)...3n)/(n^(2n))]^(1//n) is e...

    Text Solution

    |

  19. int(pi//4)^(3pi//4)(dx)/(1+cosx) is equal to

    Text Solution

    |

  20. Let In=int tan^n x dx, (n>1). If I4+I6=a tan^5 x + bx^5 + C, Where C...

    Text Solution

    |

  21. The integral int(sin^(2)xcos^(2)x)/(sin^(5)x+cos^(3)xsin^(2)x+sin^(3...

    Text Solution

    |