Home
Class 12
MATHS
Evaluate: int0^1 sin^-1 (xsqrt(1-x) -sqr...

Evaluate: `int_0^1 sin^-1 (xsqrt(1-x) -sqrtxsqrt(1-x^2))dx.`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_0^1 \sin^{-1}(x \sqrt{1-x} - \sqrt{x} \sqrt{1-x^2}) \, dx, \] we will simplify the integrand first. ### Step 1: Simplifying the Argument of the Inverse Sine Let \( x = \sin a \). Then, we have: \[ 1 - x^2 = 1 - \sin^2 a = \cos^2 a \quad \text{and} \quad \sqrt{1 - x^2} = \cos a. \] Also, we can express \( \sqrt{1-x} \): \[ \sqrt{1 - x} = \sqrt{1 - \sin a} = \sqrt{\cos^2 a} = \cos a. \] Now substituting these into the integrand: \[ x \sqrt{1-x} = \sin a \cos a, \] and \[ \sqrt{x} \sqrt{1-x^2} = \sqrt{\sin a} \cdot \cos a = \sin^{1/2} a \cdot \cos a. \] Thus, the argument of the inverse sine becomes: \[ \sin a \cos a - \sin^{1/2} a \cos a = \cos a \left( \sin a - \sin^{1/2} a \right). \] ### Step 2: Using the Inverse Sine Identity Now we can rewrite the integral as: \[ I = \int_0^1 \sin^{-1} \left( \cos a \left( \sin a - \sin^{1/2} a \right) \right) \, dx. \] ### Step 3: Change of Variables Next, we can change the variable \( x \) to \( \sin a \): \[ dx = \cos a \, da. \] When \( x = 0 \), \( a = 0 \) and when \( x = 1 \), \( a = \frac{\pi}{2} \). Thus, the limits of integration change from \( 0 \) to \( \frac{\pi}{2} \). ### Step 4: Splitting the Integral Now, we split the integral into two parts: \[ I = \int_0^{\frac{\pi}{2}} \sin^{-1}(\sin a) \cos a \, da - \int_0^{\frac{\pi}{2}} \sin^{-1}(\sin^{1/2} a) \cos a \, da. \] Let: \[ I_1 = \int_0^{\frac{\pi}{2}} a \cos a \, da, \] \[ I_2 = \int_0^{\frac{\pi}{2}} \sin^{-1}(\sin^{1/2} a) \cos a \, da. \] ### Step 5: Evaluating \( I_1 \) Using integration by parts for \( I_1 \): Let \( u = a \) and \( dv = \cos a \, da \). Then \( du = da \) and \( v = \sin a \). \[ I_1 = a \sin a \bigg|_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} \sin a \, da. \] Calculating the limits: \[ = \left( \frac{\pi}{2} \cdot 1 - 0 \right) - \left( -\cos a \bigg|_0^{\frac{\pi}{2}} \right) = \frac{\pi}{2} - (0 + 1) = \frac{\pi}{2} - 1. \] ### Step 6: Evaluating \( I_2 \) For \( I_2 \): Using the substitution \( u = \sin^{1/2} a \), we can evaluate it similarly. However, we can also note that: \[ \sin^{-1}(\sin^{1/2} a) = \frac{1}{2} a \quad \text{(for small angles)}. \] Thus, we can evaluate: \[ I_2 = \int_0^{\frac{\pi}{2}} \frac{1}{2} a \cos a \, da = \frac{1}{2} I_1. \] ### Step 7: Final Calculation Putting it all together: \[ I = I_1 - I_2 = \left( \frac{\pi}{2} - 1 \right) - \frac{1}{2} \left( \frac{\pi}{2} - 1 \right) = \frac{1}{2} \left( \frac{\pi}{2} - 1 \right). \] ### Final Result Thus, the value of the integral is: \[ \boxed{\frac{\pi}{4} - 1}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(a) SHORT ANSWER TYPE|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(a) LONG ANSWER TYPE QUESTION|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int_0^1 sin^-1x/sqrt(1+x)dx

Evaluate: inte^(sin^-1x)/sqrt (1-x^2)dx

Evaluate: int_0^1sin^-1((2x)/(1+x^2))dx

Evaluate : int sin^(-1) x/ sqrt( 1 - x^2 ) dx

int_(0)^1 (xsqrt(1-x))dx

Evaluate: int_0^1sin^(-1)((2x)/(1+x^2))dx

Evaluate: int_(0)^((1)/(2))(x sin^(-1)x)/(sqrt(1-x^(2)))dx

Evaluate int_0^1 x/(1+x^2) dx

int(x+1sqrt(1-x^(2)))/(xsqrt(1-x^(2)))dx=

MODERN PUBLICATION-INTEGRALS-COMPETITION FILE
  1. Evaluate: int0^1 sin^-1 (xsqrt(1-x) -sqrtxsqrt(1-x^2))dx.

    Text Solution

    |

  2. Let I=int0^1 (sinx)/sqrtx dx and J=int0^1 (cos x)/sqrtx dx. Then which...

    Text Solution

    |

  3. The value of sqrt(2)int(sinx)/(sin(x-(pi)/(4)))dx , is

    Text Solution

    |

  4. int(0)^(pi)[cotx]dx, where [.] denotes the greatest integer function, ...

    Text Solution

    |

  5. Let p(x) be a function defined on R such that p'(x)=p'(1-x) for all x ...

    Text Solution

    |

  6. The value of int0^1 (8log(1+x))/(1+x^2) dxis:

    Text Solution

    |

  7. For x epsilon(0,(5pi)/2), definite f(x)=int(0)^(x)sqrt(t) sin t dt. T...

    Text Solution

    |

  8. Let [] denote the greatest integet function then the value int0^1.5 x[...

    Text Solution

    |

  9. If the integral int (5 tanx)/(tanx-2) dx=x+a log |sin x-2 cosx|+c, the...

    Text Solution

    |

  10. If g(x)=int(0)^(x)cos^(4)t dt, then g(x+pi) equals

    Text Solution

    |

  11. If int f(x)dx=psi(x), then int x^5f(x^3)dx

    Text Solution

    |

  12. The intercepts on x-axis made by tangents to the curve, y=int0^x|t|...

    Text Solution

    |

  13. The integral int(1+x-1/x)e^(x+1/x)dx is equal to

    Text Solution

    |

  14. The integral int(0)^(pi)sqrt(1+4"sin"^2(x)/(2)-4"sin"(x)/(2)) dx is e...

    Text Solution

    |

  15. "The integral " int(dx)/(x^(2)(x^(4)+1)^(3//4))" equals"

    Text Solution

    |

  16. The integral int2^4(logx^2)/(logx^2+log(36-12 x+x^2)dx is equal to:...

    Text Solution

    |

  17. The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to ...

    Text Solution

    |

  18. underset (n rarr infty )(lim) [((n+1)(n+2)...3n)/(n^(2n))]^(1//n) is e...

    Text Solution

    |

  19. int(pi//4)^(3pi//4)(dx)/(1+cosx) is equal to

    Text Solution

    |

  20. Let In=int tan^n x dx, (n>1). If I4+I6=a tan^5 x + bx^5 + C, Where C...

    Text Solution

    |

  21. The integral int(sin^(2)xcos^(2)x)/(sin^(5)x+cos^(3)xsin^(2)x+sin^(3...

    Text Solution

    |