Home
Class 12
MATHS
Evaluate: int xsqrt(x^2+1) dx....

Evaluate: `int xsqrt(x^2+1) dx.`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int x \sqrt{x^2 + 1} \, dx \), we can use substitution. Here is a step-by-step solution: ### Step 1: Choose a substitution Let us set: \[ t = \sqrt{x^2 + 1} \] Then, squaring both sides gives: \[ t^2 = x^2 + 1 \quad \Rightarrow \quad x^2 = t^2 - 1 \] ### Step 2: Differentiate the substitution Now, we differentiate both sides with respect to \( x \): \[ \frac{d}{dx}(t^2) = \frac{d}{dx}(x^2 + 1) \quad \Rightarrow \quad 2t \frac{dt}{dx} = 2x \] From this, we can solve for \( dx \): \[ \frac{dt}{dx} = \frac{x}{t} \quad \Rightarrow \quad dx = \frac{t}{x} dt \] ### Step 3: Express \( x \) in terms of \( t \) From our substitution \( t = \sqrt{x^2 + 1} \), we can express \( x \) as: \[ x = \sqrt{t^2 - 1} \] ### Step 4: Substitute in the integral Now we substitute \( x \) and \( dx \) into the integral: \[ \int x \sqrt{x^2 + 1} \, dx = \int \sqrt{t^2 - 1} \cdot t \cdot \frac{t}{\sqrt{t^2 - 1}} dt \] This simplifies to: \[ \int t^2 \, dt \] ### Step 5: Integrate Now we can integrate: \[ \int t^2 \, dt = \frac{t^3}{3} + C \] ### Step 6: Substitute back Finally, we substitute back \( t = \sqrt{x^2 + 1} \): \[ \frac{(\sqrt{x^2 + 1})^3}{3} + C = \frac{(x^2 + 1)^{3/2}}{3} + C \] ### Final Answer Thus, the evaluated integral is: \[ \int x \sqrt{x^2 + 1} \, dx = \frac{(x^2 + 1)^{3/2}}{3} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(b) SHORT ANSWER TYPE|14 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(b) LONG ANSWER TYPE QUESTION|28 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(a) LONG ANSWER TYPE QUESTION|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int xsqrt(3x-2) dx=

Evaluate int xsqrt(2x)dx

Evaluate int1/(xsqrt(1+x^3))dx

Evaluate int1/(xsqrt(1+x^3))dx

int xsqrt(x^(4)+9) dx

int_0^2 xsqrt(x+2)dx

int xsqrt(1-x-x^(2)dx)

int(x.sqrt(x-5)) dx

int 1/(xsqrt(x^2-1)) dx =

int 1/(xsqrt(x^4-1))dx