Home
Class 12
MATHS
Evaluate: int (dx)/(sqrt(x+3)-sqrt(x+2))...

Evaluate: `int (dx)/(sqrt(x+3)-sqrt(x+2))`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{dx}{\sqrt{x+3} - \sqrt{x+2}}, \] we will follow a series of steps to simplify and compute the integral. ### Step 1: Rationalize the Denominator We start by rationalizing the denominator. We multiply the numerator and denominator by the conjugate of the denominator: \[ \int \frac{dx}{\sqrt{x+3} - \sqrt{x+2}} \cdot \frac{\sqrt{x+3} + \sqrt{x+2}}{\sqrt{x+3} + \sqrt{x+2}}. \] This gives us: \[ \int \frac{\sqrt{x+3} + \sqrt{x+2}}{(\sqrt{x+3} - \sqrt{x+2})(\sqrt{x+3} + \sqrt{x+2})} \, dx. \] ### Step 2: Simplify the Denominator Using the difference of squares, we can simplify the denominator: \[ (\sqrt{x+3})^2 - (\sqrt{x+2})^2 = (x+3) - (x+2) = 1. \] Thus, the integral simplifies to: \[ \int (\sqrt{x+3} + \sqrt{x+2}) \, dx. \] ### Step 3: Separate the Integral Now we can separate the integral into two parts: \[ \int \sqrt{x+3} \, dx + \int \sqrt{x+2} \, dx. \] ### Step 4: Compute Each Integral For the first integral, let \( u = x + 3 \), then \( du = dx \): \[ \int \sqrt{x+3} \, dx = \int \sqrt{u} \, du = \frac{u^{3/2}}{3/2} = \frac{2}{3} u^{3/2} = \frac{2}{3} (x+3)^{3/2}. \] For the second integral, let \( v = x + 2 \), then \( dv = dx \): \[ \int \sqrt{x+2} \, dx = \int \sqrt{v} \, dv = \frac{v^{3/2}}{3/2} = \frac{2}{3} v^{3/2} = \frac{2}{3} (x+2)^{3/2}. \] ### Step 5: Combine Results Combining both results, we have: \[ \int \frac{dx}{\sqrt{x+3} - \sqrt{x+2}} = \frac{2}{3} (x+3)^{3/2} + \frac{2}{3} (x+2)^{3/2} + C, \] where \( C \) is the constant of integration. ### Final Result Thus, the final result of the integral is: \[ \int \frac{dx}{\sqrt{x+3} - \sqrt{x+2}} = \frac{2}{3} (x+3)^{3/2} + \frac{2}{3} (x+2)^{3/2} + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(b) SHORT ANSWER TYPE|14 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(b) LONG ANSWER TYPE QUESTION|28 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(a) LONG ANSWER TYPE QUESTION|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(dx)/(sqrt(x)+sqrt(x-2))

Evaluate: int(x)/(sqrt(x+2))dx

int(1)/(sqrt(x+3)-sqrt(x+2))dx

Evaluate int(dx)/((sqrt(2x+3)+sqrt(2x-3))).

int(dx)/(sqrt(2x+3)+sqrt(2x-3))

int(dx)/(sqrt(3x+5)-sqrt(3x+2))=

Evaluate : int(1)/(sqrt(x+1)+sqrt(x+2))dx

Evaluate: int(x)/(sqrt(x+a)+sqrt(x+b))dx

Evaluate: int x sqrt(x+2)dx

Evaluate: int cos^(3)sqrt(x)dx