Home
Class 12
MATHS
Find: int cos 6x sqrt(1+sin 6x) dx....

Find: `int cos 6x sqrt(1+sin 6x) dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \cos(6x) \sqrt{1 + \sin(6x)} \, dx \), we can use a substitution method. Here are the steps: ### Step 1: Substitution Let \( t = 1 + \sin(6x) \). Then, we differentiate \( t \) with respect to \( x \): \[ \frac{dt}{dx} = 6 \cos(6x) \] This implies: \[ dt = 6 \cos(6x) \, dx \quad \Rightarrow \quad \cos(6x) \, dx = \frac{1}{6} dt \] ### Step 2: Rewrite the Integral Now, substitute \( t \) into the integral: \[ \int \cos(6x) \sqrt{1 + \sin(6x)} \, dx = \int \sqrt{t} \cdot \frac{1}{6} dt = \frac{1}{6} \int \sqrt{t} \, dt \] ### Step 3: Integrate The integral of \( \sqrt{t} \) can be computed as follows: \[ \int \sqrt{t} \, dt = \int t^{1/2} \, dt = \frac{t^{3/2}}{3/2} = \frac{2}{3} t^{3/2} \] Thus, \[ \frac{1}{6} \int \sqrt{t} \, dt = \frac{1}{6} \cdot \frac{2}{3} t^{3/2} = \frac{1}{9} t^{3/2} \] ### Step 4: Substitute Back Now, substitute back \( t = 1 + \sin(6x) \): \[ \frac{1}{9} t^{3/2} = \frac{1}{9} (1 + \sin(6x))^{3/2} \] ### Step 5: Add the Constant of Integration Finally, we add the constant of integration \( C \): \[ \int \cos(6x) \sqrt{1 + \sin(6x)} \, dx = \frac{1}{9} (1 + \sin(6x))^{3/2} + C \] ### Final Answer Thus, the solution to the integral is: \[ \int \cos(6x) \sqrt{1 + \sin(6x)} \, dx = \frac{1}{9} (1 + \sin(6x))^{3/2} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(b) SHORT ANSWER TYPE|14 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(b) LONG ANSWER TYPE QUESTION|28 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(a) LONG ANSWER TYPE QUESTION|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int cos6x sqrt(1+sin6x)dx

Evaluate: int cos x sqrt(4-sin^(2)x)dx

Evaluate the following integrals. int (sin x + cos x)/(sqrt(1+ sin 2x))dx

int_(pi/6)^(pi/3) (sin x+ cos x)/(sqrt(sin 2x))dx

int(1)/(sin x sqrt(sin x cos x))dx

int(1)/(sin x sqrt(sin x cos x))dx=

int(1)/(sin x sqrt(sin x cos x))dx=

int_(0)^(pi//6) sqrt(1-sin 2x) dx

Evaluate: int(cos x)/(sqrt(4+sin^(2)x))dx

Evaluate: int(cos x)/(sqrt(4-sin^(2)x))dx