Home
Class 12
MATHS
Integrate: int cos^3 x sin^4 x dx....

Integrate: `int cos^3 x sin^4 x dx.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \cos^3 x \sin^4 x \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We can express the integral as: \[ \int \cos^3 x \sin^4 x \, dx = \int \sin^4 x \cos^2 x \cos x \, dx \] Here, we have separated \( \cos^3 x \) into \( \cos^2 x \cdot \cos x \). ### Step 2: Use the Pythagorean Identity Using the identity \( \cos^2 x = 1 - \sin^2 x \), we can rewrite the integral: \[ \int \sin^4 x (1 - \sin^2 x) \cos x \, dx \] ### Step 3: Substitute \( t = \sin x \) Let \( t = \sin x \). Then, \( dt = \cos x \, dx \). The integral becomes: \[ \int t^4 (1 - t^2) \, dt \] ### Step 4: Expand the Integral Now, we expand the integrand: \[ \int (t^4 - t^6) \, dt \] ### Step 5: Integrate Term by Term Now we can integrate term by term: \[ \int t^4 \, dt - \int t^6 \, dt = \frac{t^5}{5} - \frac{t^7}{7} + C \] ### Step 6: Combine the Results Combining the results, we have: \[ \frac{t^5}{5} - \frac{t^7}{7} + C \] ### Step 7: Substitute Back for \( t \) Now we substitute back \( t = \sin x \): \[ \frac{\sin^5 x}{5} - \frac{\sin^7 x}{7} + C \] ### Step 8: Simplify the Expression To combine the terms, we can express it as: \[ \frac{1}{35} (7 \sin^5 x - 5 \sin^7 x) + C \] Thus, the final answer is: \[ \int \cos^3 x \sin^4 x \, dx = \frac{1}{35} (7 \sin^5 x - 5 \sin^7 x) + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(b) SHORT ANSWER TYPE|14 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(b) LONG ANSWER TYPE QUESTION|28 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(a) LONG ANSWER TYPE QUESTION|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Integrate : int cos x sqrt(sin x)dx

Integrate: int sin x cos2x sin3xdx

Integrate : int e^x sin x dx.

Evaluate the following integrals: int (1-cos x)/(sin x) dx

Evaluate the following Integrals. int (cos x)/(1+sin x) dx

Evaluate the following integrals: int cos^(-1)(sin x)dx

Integrate: int sin4x cos7xdx

Integrate: int sin3x*cos6xdx

Solve the following integration int (cos x - sin x)/(cos x + sin x)*(2+2 sin 2x)dx

Evaluate the following integration int sin^(3) x cos^(3) x dx