Home
Class 12
MATHS
Integrate : int (tan^4 sqrtx sec^2 sqrtx...

Integrate : `int (tan^4 sqrtx sec^2 sqrtx)/sqrtx dx.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\tan^4(\sqrt{x}) \sec^2(\sqrt{x})}{\sqrt{x}} \, dx \), we will use a substitution method. Here are the steps: ### Step-by-Step Solution: 1. **Substitution**: Let \( u = \tan(\sqrt{x}) \). Then, we need to find \( du \). \[ \frac{du}{dx} = \sec^2(\sqrt{x}) \cdot \frac{d}{dx}(\sqrt{x}) = \sec^2(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}} \] Therefore, \[ du = \sec^2(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}} \, dx \quad \Rightarrow \quad dx = 2\sqrt{x} \, du \cdot \frac{1}{\sec^2(\sqrt{x})} \] 2. **Rewriting the Integral**: Substitute \( u \) and \( dx \) into the integral: \[ \int \frac{\tan^4(\sqrt{x}) \sec^2(\sqrt{x})}{\sqrt{x}} \, dx = \int \frac{u^4 \sec^2(\sqrt{x})}{\sqrt{x}} \cdot 2\sqrt{x} \, du \] This simplifies to: \[ 2 \int u^4 \, du \] 3. **Integrating**: Now, we can integrate \( 2 \int u^4 \, du \): \[ 2 \cdot \frac{u^5}{5} + C = \frac{2}{5} u^5 + C \] 4. **Back Substitution**: Substitute back \( u = \tan(\sqrt{x}) \): \[ \frac{2}{5} \tan^5(\sqrt{x}) + C \] ### Final Answer: \[ \int \frac{\tan^4(\sqrt{x}) \sec^2(\sqrt{x})}{\sqrt{x}} \, dx = \frac{2}{5} \tan^5(\sqrt{x}) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(b) SHORT ANSWER TYPE|14 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(b) LONG ANSWER TYPE QUESTION|28 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(a) LONG ANSWER TYPE QUESTION|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int(sec sqrtx)/(sqrtx)dx=

int (cossqrtx)/(sqrtx)dx

sec^(-1)sqrtx

Evaluate : int ( sqrtx + 1/sqrtx ) dx

The integral I=int(e^(sqrtx)cos(e^(sqrtx)))/(sqrtx)dx=f(x)+c (where, c is the constant of integration) and f(ln((pi)/(4)))^(2)=sqrt2. Then, the number of solutions of f(x)=2e (AA x in R-{0}) is equal to

1/sqrtx (sqrtx+1/sqrtx)^2

int ((1+sqrtx)^2)/sqrtx dx=

int(sqrt(1+sqrtx))/(sqrtx)dx=