Home
Class 12
MATHS
Integrate: int e^x ((x^2+1)/(x+1)^2) dx....

Integrate: `int e^x ((x^2+1)/(x+1)^2) dx.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^x \frac{x^2 + 1}{(x + 1)^2} \, dx \), we will use substitution and integration techniques. Here’s a step-by-step solution: ### Step 1: Substitution Let \( t = x + 1 \). Then, we have: \[ x = t - 1 \quad \text{and} \quad dx = dt \] Now, we can rewrite the integral in terms of \( t \): \[ \int e^{t-1} \frac{(t-1)^2 + 1}{t^2} \, dt \] ### Step 2: Simplifying the Integrand Next, we simplify the expression \( (t - 1)^2 + 1 \): \[ (t - 1)^2 + 1 = t^2 - 2t + 1 + 1 = t^2 - 2t + 2 \] Thus, the integral becomes: \[ \int e^{t-1} \frac{t^2 - 2t + 2}{t^2} \, dt \] ### Step 3: Factor Out \( e^{-1} \) We can factor out \( e^{-1} \): \[ e^{-1} \int e^t \left( \frac{t^2 - 2t + 2}{t^2} \right) dt \] This can be separated into: \[ e^{-1} \int e^t \left( 1 - \frac{2}{t} + \frac{2}{t^2} \right) dt \] ### Step 4: Splitting the Integral Now we can split the integral: \[ e^{-1} \left( \int e^t \, dt - 2 \int \frac{e^t}{t} \, dt + 2 \int \frac{e^t}{t^2} \, dt \right) \] ### Step 5: Integrating Each Term 1. The first integral \( \int e^t \, dt = e^t + C_1 \). 2. The second integral \( \int \frac{e^t}{t} \, dt \) is a known integral, often denoted as \( \text{Ei}(t) \). 3. The third integral \( \int \frac{e^t}{t^2} \, dt \) can be solved using integration by parts. ### Step 6: Putting It All Together Combining these results, we have: \[ e^{-1} \left( e^t - 2 \text{Ei}(t) + 2 \left( -\frac{e^t}{t} + C_2 \right) \right) \] Substituting back \( t = x + 1 \): \[ e^{-1} \left( e^{x+1} - 2 \text{Ei}(x+1) - \frac{2e^{x+1}}{x+1} + C \right) \] ### Final Answer Thus, the final answer is: \[ \int e^x \frac{x^2 + 1}{(x + 1)^2} \, dx = e^x - \frac{2 e^x}{x + 1} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(g) SHORT TYPE QUESTION|13 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(g) LONG ANSWER TYPE QUESTION (I)|8 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(f)|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Find the Definite Integrals : int_1^2 e^x((x-1)/x^2) dx

Integrate: int e^x sin^2 x dx.

Integrate: int(3 x^2)/(x^(3)-1)dx

Integrate int_1^2x^3dx

Integrate : int ( x / sqrt( 1 + x^2 ) ) dx

Integrate : int_(2)^(1)(1)/(x log x)dx

Evaluate the following integration int((1+x)^(2))/(x(1+x^(2)))dx

Evaluate the following integrals: inte^(x)*(x)/((1+x)^(2))dx

What is the value of the integral int_1^pi e^x (1/x-1/x^2)dx

Integrate :int(x^(3)+3x+2)/((x^(2)+1)^(2)(x+1))dx