Home
Class 12
MATHS
Find: int (2x-5)/(2x-3)^3 e^(2x) dx....

Find: `int (2x-5)/(2x-3)^3 e^(2x) dx.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{2x-5}{(2x-3)^3} e^{2x} \, dx \), we will use substitution and integration techniques. Here’s a step-by-step solution: ### Step 1: Substitution Let \( t = 2x - 3 \). Then, we differentiate to find \( dx \): \[ dt = 2 \, dx \implies dx = \frac{1}{2} dt \] Also, we can express \( 2x \) in terms of \( t \): \[ 2x = t + 3 \implies 2x - 5 = t + 3 - 5 = t - 2 \] ### Step 2: Rewrite the Integral Substituting \( t \) and \( dx \) into the integral, we have: \[ \int \frac{2x-5}{(2x-3)^3} e^{2x} \, dx = \int \frac{t-2}{t^3} e^{t+3} \cdot \frac{1}{2} dt \] This simplifies to: \[ \frac{1}{2} \int \frac{t-2}{t^3} e^{t+3} \, dt \] ### Step 3: Simplify the Integral We can separate the integral: \[ \frac{1}{2} \int \left( \frac{t}{t^3} - \frac{2}{t^3} \right) e^{t+3} \, dt = \frac{1}{2} \int \left( \frac{1}{t^2} - \frac{2}{t^3} \right) e^{t+3} \, dt \] This can be rewritten as: \[ \frac{1}{2} e^3 \int \left( \frac{1}{t^2} - \frac{2}{t^3} \right) e^t \, dt \] ### Step 4: Identify \( f(t) \) and \( f'(t) \) Let \( f(t) = \frac{1}{t^2} \). Then, we find \( f'(t) \): \[ f'(t) = -\frac{2}{t^3} \] Thus, we can express our integral as: \[ \frac{1}{2} e^3 \int e^t \left( f(t) + f'(t) \right) dt \] ### Step 5: Integrate Using the Formula Using the integration formula \( \int e^x (f(x) + f'(x)) \, dx = e^x f(x) + C \), we get: \[ \frac{1}{2} e^3 \left( e^t f(t) + C \right) = \frac{1}{2} e^3 \left( e^t \cdot \frac{1}{t^2} + C \right) \] ### Step 6: Substitute Back Substituting back \( t = 2x - 3 \): \[ = \frac{1}{2} e^3 \left( \frac{e^{2x-3}}{(2x-3)^2} + C \right) \] This simplifies to: \[ = \frac{e^{2x}}{2(2x-3)^2} + C' \] where \( C' = \frac{e^3}{2}C \). ### Final Answer Thus, the final result is: \[ \int \frac{2x-5}{(2x-3)^3} e^{2x} \, dx = \frac{e^{2x}}{2(2x-3)^2} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(g) SHORT TYPE QUESTION|13 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(g) LONG ANSWER TYPE QUESTION (I)|8 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(f)|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int(5x-3)/(x^2-2x-3)dx

int e^(2x+3)dx

Find int _(1)^(3)(3-2x + x^(2)) dx.

int(dx)/(e^(2x)-3e^(x))=

Find: int x^(2)(x^(5)+2x^(3))dx

Evaluate int(x^(2)+2x-1)/(2x^(3)+3x^(2)-2x)dx

int(3e^(2x)+5)/(4e^(2x)-5)dx=

Evaluate int dx/(2x-3)^5

int (2x -3 cos x+ e^(x))dx