Home
Class 12
MATHS
Evaluate: int(x^2+x+1)/((x+2)(x^2+1)) dx...

Evaluate: `int(x^2+x+1)/((x+2)(x^2+1)) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{x^2 + x + 1}{(x + 2)(x^2 + 1)} \, dx, \] we will use partial fraction decomposition and integration techniques. ### Step 1: Set up Partial Fraction Decomposition We can express the integrand as: \[ \frac{x^2 + x + 1}{(x + 2)(x^2 + 1)} = \frac{A}{x + 2} + \frac{Bx + C}{x^2 + 1} \] where \(A\), \(B\), and \(C\) are constants to be determined. ### Step 2: Multiply through by the denominator Multiplying both sides by \((x + 2)(x^2 + 1)\) gives: \[ x^2 + x + 1 = A(x^2 + 1) + (Bx + C)(x + 2). \] ### Step 3: Expand the right side Expanding the right-hand side: \[ A(x^2 + 1) + (Bx + C)(x + 2) = Ax^2 + A + Bx^2 + 2Bx + Cx + 2C. \] Combining like terms, we have: \[ (A + B)x^2 + (2B + C)x + (A + 2C). \] ### Step 4: Set up equations for coefficients Now, we equate coefficients from both sides: 1. For \(x^2\): \(A + B = 1\) 2. For \(x\): \(2B + C = 1\) 3. For the constant term: \(A + 2C = 1\) ### Step 5: Solve the system of equations From the first equation \(A + B = 1\), we can express \(B\) in terms of \(A\): \[ B = 1 - A. \] Substituting \(B\) into the second equation: \[ 2(1 - A) + C = 1 \implies 2 - 2A + C = 1 \implies C = 2A - 1. \] Now substituting \(B\) and \(C\) into the third equation: \[ A + 2(2A - 1) = 1 \implies A + 4A - 2 = 1 \implies 5A = 3 \implies A = \frac{3}{5}. \] Using \(A\) to find \(B\) and \(C\): \[ B = 1 - \frac{3}{5} = \frac{2}{5}, \] \[ C = 2\left(\frac{3}{5}\right) - 1 = \frac{6}{5} - 1 = \frac{1}{5}. \] ### Step 6: Rewrite the integral Now substituting back into the partial fractions: \[ \frac{x^2 + x + 1}{(x + 2)(x^2 + 1)} = \frac{3/5}{x + 2} + \frac{(2/5)x + (1/5)}{x^2 + 1}. \] Thus, we can rewrite the integral as: \[ I = \int \left( \frac{3/5}{x + 2} + \frac{(2/5)x + (1/5)}{x^2 + 1} \right) \, dx. \] ### Step 7: Integrate term by term Now we can integrate each term separately: 1. For \(\frac{3/5}{x + 2}\): \[ \int \frac{3/5}{x + 2} \, dx = \frac{3}{5} \ln |x + 2|. \] 2. For \(\frac{(2/5)x}{x^2 + 1}\): Using the substitution \(u = x^2 + 1\), \(du = 2x \, dx\): \[ \int \frac{(2/5)x}{x^2 + 1} \, dx = \frac{1}{5} \ln |x^2 + 1|. \] 3. For \(\frac{1/5}{x^2 + 1}\): \[ \int \frac{1/5}{x^2 + 1} \, dx = \frac{1}{5} \tan^{-1}(x). \] ### Step 8: Combine results Combining all parts, we have: \[ I = \frac{3}{5} \ln |x + 2| + \frac{1}{5} \ln |x^2 + 1| + \frac{1}{5} \tan^{-1}(x) + C, \] where \(C\) is the constant of integration. ### Final Answer Thus, the evaluated integral is: \[ I = \frac{3}{5} \ln |x + 2| + \frac{1}{5} \ln |x^2 + 1| + \frac{1}{5} \tan^{-1}(x) + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(i) SHORT ANSWER TYPE QUESTIONS|4 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(i) LONG ANSWER TYPE QUESTIONS (I)|37 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7 (h) SHORT ANSWER TYPE QUESTION|3 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(x^2+1)/(x+1)^2dx

Evaluate: int(x^2)/((x-1)(x+1)^2)\ dx

Evaluate : int(x^(2)-1)/((x+1)(x+2))dx

Evaluate: int(2x+1)/((x+1)(x-2))dx

Evaluate: int(x^(2)+1)/(x(x^(2)-1))dx

Evaluate : int(x^(2)+3x-1)/(2x)dx

Evaluate: int(2x+1)/((x-2)(x-3))dx

Evaluate: int(x^2+1)/(xsqrt(x^2+1))dx

Evaluate: int(2x-1)/((x-1)^(2))dx

Evaluate int(x^2-1)/(x^2+1)dx