Home
Class 12
MATHS
int (dx)/(x sqrt(x^2+4x-4))...

`int (dx)/(x sqrt(x^2+4x-4))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{dx}{x \sqrt{x^2 + 4x - 4}} \), we can follow these steps: ### Step 1: Simplify the expression under the square root First, we simplify the expression \( x^2 + 4x - 4 \): \[ x^2 + 4x - 4 = (x + 2)^2 - 8 \] Thus, we can rewrite the integral as: \[ \int \frac{dx}{x \sqrt{(x + 2)^2 - 8}} \] ### Step 2: Use substitution Next, we will use the substitution: \[ x + 2 = 2\sqrt{2} \sin(\theta) \quad \Rightarrow \quad dx = 2\sqrt{2} \cos(\theta) d\theta \] This gives us: \[ x = 2\sqrt{2} \sin(\theta) - 2 \] ### Step 3: Substitute in the integral Substituting \( x \) and \( dx \) into the integral, we have: \[ \sqrt{(x + 2)^2 - 8} = \sqrt{(2\sqrt{2} \sin(\theta))^2 - 8} = \sqrt{8\sin^2(\theta) - 8} = 2\sqrt{2} \sqrt{\sin^2(\theta) - 1} = 2\sqrt{2} \cos(\theta) \] Thus, the integral becomes: \[ \int \frac{2\sqrt{2} \cos(\theta) d\theta}{(2\sqrt{2} \sin(\theta) - 2)(2\sqrt{2} \cos(\theta))} \] ### Step 4: Simplify the integral Now, simplifying the integral: \[ \int \frac{2\sqrt{2} \cos(\theta) d\theta}{(2\sqrt{2} \sin(\theta) - 2)(2\sqrt{2} \cos(\theta))} = \int \frac{d\theta}{2\sqrt{2} \sin(\theta) - 2} \] This can be simplified further: \[ = \frac{1}{2\sqrt{2}} \int \frac{d\theta}{\sin(\theta) - 1} \] ### Step 5: Solve the integral The integral \( \int \frac{d\theta}{\sin(\theta) - 1} \) can be solved using partial fractions or other methods, leading to: \[ \int \frac{d\theta}{\sin(\theta) - 1} = -\ln|\tan(\theta/2)| + C \] ### Step 6: Back-substitution Now, we need to back-substitute \( \theta \) in terms of \( x \): From our substitution \( x + 2 = 2\sqrt{2} \sin(\theta) \), we have: \[ \sin(\theta) = \frac{x + 2}{2\sqrt{2}} \] Thus, we substitute back to get: \[ \int \frac{dx}{x \sqrt{x^2 + 4x - 4}} = -\frac{1}{2\sqrt{2}} \ln\left| \tan\left(\frac{1}{2} \sin^{-1}\left(\frac{x + 2}{2\sqrt{2}}\right) \right) \right| + C \] ### Final Answer The final answer for the integral is: \[ -\frac{1}{2} \sin^{-1}\left(\frac{x + 2}{2\sqrt{2}}\right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(m)FAQ|9 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(m) LONG ANSWER TYPE QUESTION (I)|6 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(j) LONG ANSWER TYPE QUESTION (I)|5 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int (dx)/sqrt(x^2+4x+2)

int(dx)/(sqrt(x^(2)+4x+4))

int(dx)/(sqrt(2x^(2)+4x+6))

int(dx)/(sqrt(x^(2)-4x+5))=

int(dx)/(sqrt(3x^2-4x+2))=

int (dx)/(sqrt(4x^(2)-25))

int(dx)/(x sqrt(4x^(2)+9))

int(dx)/(sqrt(x^2+4x+29))=

int(dx)/(sqrt(x^(2)-4x+6))

Evaluate int(dx)/(x-sqrt(x^(2)+2x+4)) .