Home
Class 12
MATHS
int (dx)/sqrt((2x-x^2)^3...

`int (dx)/sqrt((2x-x^2)^3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{dx}{\sqrt{(2x - x^2)^3}} \), we will follow a systematic approach. ### Step 1: Rewrite the expression under the square root First, we can rewrite the expression inside the square root: \[ 2x - x^2 = - (x^2 - 2x) = - (x(x - 2)) \] Thus, we have: \[ I = \int \frac{dx}{\sqrt{(-(x(x - 2)))^3}} = \int \frac{dx}{\sqrt{-(x^3(x - 2)^3)}} \] ### Step 2: Factor out \(x^2\) Next, we factor out \(x^2\) from the expression: \[ 2x - x^2 = -x^2(x - 2) \] This gives us: \[ I = \int \frac{dx}{\sqrt{(-x^2(x - 2))^3}} = \int \frac{dx}{\sqrt{-x^6(x - 2)^3}} = \int \frac{dx}{(-1)^{3/2} x^3 \sqrt{(x - 2)^3}} \] Since \((-1)^{3/2} = -i\), we can ignore the imaginary unit for now and focus on the real part. ### Step 3: Substitution Let’s make the substitution: \[ t = \frac{2}{x} - 1 \implies x = \frac{2}{t + 1} \] Differentiating gives: \[ dx = -\frac{2}{(t + 1)^2} dt \] ### Step 4: Change of variables in the integral Now substitute \(x\) and \(dx\) in the integral: \[ I = \int \frac{-\frac{2}{(t + 1)^2} dt}{\sqrt{(2(\frac{2}{t + 1}) - (\frac{2}{t + 1})^2)^3}} \] Calculating the expression inside the square root: \[ 2(\frac{2}{t + 1}) - (\frac{2}{t + 1})^2 = \frac{4}{t + 1} - \frac{4}{(t + 1)^2} = \frac{4(t + 1) - 4}{(t + 1)^2} = \frac{4t}{(t + 1)^2} \] Thus: \[ I = \int \frac{-\frac{2}{(t + 1)^2} dt}{\sqrt{\left(\frac{4t}{(t + 1)^2}\right)^3}} = \int \frac{-\frac{2}{(t + 1)^2} dt}{\sqrt{\frac{64t^3}{(t + 1)^6}}} \] This simplifies to: \[ I = \int \frac{-\frac{2}{(t + 1)^2} dt}{\frac{8t^{3/2}}{(t + 1)^3}} = \int \frac{-2(t + 1) dt}{8t^{3/2}} = -\frac{1}{4} \int \frac{(t + 1) dt}{t^{3/2}} \] ### Step 5: Separate the integral Now we can separate the integral: \[ I = -\frac{1}{4} \left( \int t^{-1/2} dt + \int t^{-3/2} dt \right) \] ### Step 6: Integrate Integrating term by term: \[ \int t^{-1/2} dt = 2t^{1/2}, \quad \int t^{-3/2} dt = -2t^{-1/2} \] Thus: \[ I = -\frac{1}{4} \left( 2t^{1/2} - 2t^{-1/2} \right) + C \] This simplifies to: \[ I = -\frac{1}{2} t^{1/2} + \frac{1}{2} t^{-1/2} + C \] ### Step 7: Substitute back for \(t\) Recalling that \(t = \frac{2}{x} - 1\), we substitute back: \[ I = -\frac{1}{2} \sqrt{\frac{2}{x} - 1} + \frac{1}{2} \frac{1}{\sqrt{\frac{2}{x} - 1}} + C \] ### Final Result Thus, the final result of the integral is: \[ I = \frac{1}{2} \left( \frac{1}{\sqrt{\frac{2}{x} - 1}} - \sqrt{\frac{2}{x} - 1} \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(m)FAQ|9 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(m) LONG ANSWER TYPE QUESTION (I)|6 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(j) LONG ANSWER TYPE QUESTION (I)|5 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

(i) int (dx)/sqrt(x(1-2x)) (ii) int (dx)/sqrt(2x-x^2)

int(dx)/(sqrt((a^2+x^2)^3))=

int(x^2)/(sqrt((a^2-x^2)^3))dx=

int(dx)/(sqrt(1+2x-3x^(2)))

int(dx)/(sqrt((a^(2)-x^(2))^(3)))

Find int(dx)/(sqrt(3-2x-x^(2)))

integrate int(dx)/(sqrt(3-2x-x^(2)))

(i) int (dx)/(x sqrt(x^2-1)) (ii) int (dx)/(x sqrt(ax -x^2))

int (dx)/(x sqrt(x^2+3))

Evaluate int (dx)/sqrt(7+3x+2x^2)