Home
Class 12
MATHS
(i) int (dx)/(x sqrt(x^2-1)) (ii) int (d...

(i) `int (dx)/(x sqrt(x^2-1))` (ii) `int (dx)/(x sqrt(ax -x^2))`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given integrals step by step. ### Part (i): \(\int \frac{dx}{x \sqrt{x^2 - 1}}\) **Step 1: Substitution** Let \( x = \sec \theta \). Then, we have: \[ dx = \sec \theta \tan \theta \, d\theta \] **Step 2: Substitute in the integral** Substituting \( x \) and \( dx \) into the integral: \[ \int \frac{dx}{x \sqrt{x^2 - 1}} = \int \frac{\sec \theta \tan \theta \, d\theta}{\sec \theta \sqrt{\sec^2 \theta - 1}} \] Since \( \sec^2 \theta - 1 = \tan^2 \theta \), we have: \[ \sqrt{\sec^2 \theta - 1} = \tan \theta \] Thus, the integral simplifies to: \[ \int \frac{\sec \theta \tan \theta \, d\theta}{\sec \theta \tan \theta} = \int d\theta \] **Step 3: Integrate** The integral of \( d\theta \) is: \[ \theta + C \] **Step 4: Back substitute** Since \( \theta = \sec^{-1}(x) \), we have: \[ \int \frac{dx}{x \sqrt{x^2 - 1}} = \sec^{-1}(x) + C \] ### Part (ii): \(\int \frac{dx}{x \sqrt{ax - x^2}}\) **Step 1: Substitution** Let \( x = a \sin^2 \theta \). Then, we have: \[ dx = 2a \sin \theta \cos \theta \, d\theta \] **Step 2: Substitute in the integral** Substituting \( x \) and \( dx \) into the integral: \[ \int \frac{dx}{x \sqrt{ax - x^2}} = \int \frac{2a \sin \theta \cos \theta \, d\theta}{a \sin^2 \theta \sqrt{a \sin^2 \theta - a^2 \sin^4 \theta}} \] This simplifies to: \[ \int \frac{2 \sin \theta \cos \theta \, d\theta}{\sin^2 \theta \sqrt{a(1 - \sin^2 \theta)}} \] Since \( \sqrt{1 - \sin^2 \theta} = \cos \theta \), we have: \[ \int \frac{2 \sin \theta \cos \theta \, d\theta}{\sin^2 \theta \cdot \sqrt{a} \cos \theta} = \int \frac{2 \, d\theta}{\sqrt{a} \sin \theta} \] **Step 3: Integrate** The integral becomes: \[ \frac{2}{\sqrt{a}} \int \csc \theta \, d\theta = \frac{2}{\sqrt{a}} (-\ln |\csc \theta + \cot \theta|) + C \] **Step 4: Back substitute** Using \( \sin^2 \theta = \frac{x}{a} \), we can express \( \csc \theta \) and \( \cot \theta \) in terms of \( x \): \[ \csc \theta = \frac{\sqrt{a}}{\sqrt{x}}, \quad \cot \theta = \frac{\sqrt{a - x}}{\sqrt{x}} \] Thus, the final result is: \[ \int \frac{dx}{x \sqrt{ax - x^2}} = -\frac{2}{\sqrt{a}} \ln \left| \frac{\sqrt{a}}{\sqrt{x}} + \frac{\sqrt{a - x}}{\sqrt{x}} \right| + C \] ### Summary of Solutions: 1. \(\int \frac{dx}{x \sqrt{x^2 - 1}} = \sec^{-1}(x) + C\) 2. \(\int \frac{dx}{x \sqrt{ax - x^2}} = -\frac{2}{\sqrt{a}} \ln \left| \frac{\sqrt{a}}{\sqrt{x}} + \frac{\sqrt{a - x}}{\sqrt{x}} \right| + C\)
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(m)FAQ|9 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(m) LONG ANSWER TYPE QUESTION (I)|6 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(j) LONG ANSWER TYPE QUESTION (I)|5 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Integrate the following integrals (i) int(dx)/(sqrt(5x^(2)-2x)) (ii) int(1)/(sqrt(2ax-x^(2)))dx

int(dx)/(x^(2)sqrt(x+1))

int(dx)/((x-2)sqrt(x+1))

int(dx)/((x+1)sqrt(x+2))

int(dx)/((x-1)sqrt(x+2))

(i) int (dx)/sqrt(x(1-2x)) (ii) int (dx)/sqrt(2x-x^2)

(i) int (dx)/sqrt(16-6x-x^2) (ii) int (dx)/sqrt(7-6x-x^2)

(i) int (dx)/sqrt(5+4x-x^2) (ii) int (dx)/sqrt(8+3x-x^2)

int(dx)/(sqrt(1-x-x^(2)))

int(x^(2)dx)/(sqrt(x+1))