Home
Class 12
MATHS
int (cos x)/( sin x+sqrt(sin x)) dx...

`int (cos x)/( sin x+sqrt(sin x)) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{\cos x}{\sin x + \sqrt{\sin x}} \, dx\), we can follow these steps: ### Step 1: Substitution Let \( t = \sqrt{\sin x} \). Then, we have: \[ \sin x = t^2 \] Now, we need to find \( dx \) in terms of \( dt \). ### Step 2: Differentiate \( t \) Differentiating both sides with respect to \( x \): \[ \frac{dt}{dx} = \frac{1}{2\sqrt{\sin x}} \cdot \cos x = \frac{1}{2t} \cos x \] Thus, we can express \( dx \) as: \[ dx = \frac{2t}{\cos x} \, dt \] ### Step 3: Substitute in the Integral Now substitute \( \sin x \) and \( dx \) into the integral: \[ \int \frac{\cos x}{t^2 + t} \cdot \frac{2t}{\cos x} \, dt \] The \(\cos x\) terms cancel out: \[ = \int \frac{2t}{t^2 + t} \, dt \] ### Step 4: Simplify the Integral We can simplify the integrand: \[ = \int \frac{2t}{t(t + 1)} \, dt = \int \frac{2}{t + 1} \, dt \] ### Step 5: Integrate Now we can integrate: \[ = 2 \int \frac{1}{t + 1} \, dt = 2 \ln |t + 1| + C \] ### Step 6: Substitute Back Now substitute back \( t = \sqrt{\sin x} \): \[ = 2 \ln |1 + \sqrt{\sin x}| + C \] ### Final Answer Thus, the integral evaluates to: \[ \int \frac{\cos x}{\sin x + \sqrt{\sin x}} \, dx = 2 \ln |1 + \sqrt{\sin x}| + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(m)FAQ|9 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(m) LONG ANSWER TYPE QUESTION (I)|6 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(j) LONG ANSWER TYPE QUESTION (I)|5 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int(cos x-sin x)/(sqrt(sin2x))dx

(i) int (cos x-sin x)/sqrt(1+ sin 2x) dx (ii) int (cos x) /((cos (x/2)+sin (x/2))) dx

int(1)/(sin x sqrt(sin x cos x))dx=

int(1)/(sin x sqrt(sin x cos x))dx=

int(1)/(sin x sqrt(sin x cos x))dx

int(cos x-sin x)/(sqrt(8-sin2x))dx=sin^(-1)((sin x+cos x)/(a))+c

The value of int_(0)^( pi/2)(sqrt(cos x))/(sqrt(sin x)+sqrt(cos x))dx

int_(0)^(pi)(cos x)/(1+sqrt(sin x))dx=

Evaluate: int(cos x)/(sqrt(4+sin^(2)x))dx