Home
Class 12
MATHS
int (sin^-1x)/x^2 dx...

`int (sin^-1x)/x^2 dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\sin^{-1} x}{x^2} \, dx \), we can use integration by parts. Here’s a step-by-step solution: ### Step 1: Set up the integration by parts We will use the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] Let: - \( u = \sin^{-1} x \) (which implies \( du = \frac{1}{\sqrt{1 - x^2}} \, dx \)) - \( dv = \frac{1}{x^2} \, dx \) (which implies \( v = -\frac{1}{x} \)) ### Step 2: Apply the integration by parts formula Now, applying the integration by parts: \[ I = uv - \int v \, du \] Substituting \( u \), \( du \), \( v \): \[ I = \left(-\frac{\sin^{-1} x}{x}\right) - \int \left(-\frac{1}{x} \cdot \frac{1}{\sqrt{1 - x^2}} \, dx\right) \] This simplifies to: \[ I = -\frac{\sin^{-1} x}{x} + \int \frac{1}{x \sqrt{1 - x^2}} \, dx \] ### Step 3: Solve the remaining integral To solve \( \int \frac{1}{x \sqrt{1 - x^2}} \, dx \), we can use the substitution \( x = \sin \theta \), which gives \( dx = \cos \theta \, d\theta \). Thus, the integral becomes: \[ \int \frac{1}{\sin \theta \sqrt{1 - \sin^2 \theta}} \cos \theta \, d\theta = \int \frac{1}{\sin \theta \cos \theta} \cos \theta \, d\theta = \int \frac{1}{\sin \theta} \, d\theta \] This integral is: \[ \int \csc \theta \, d\theta = \ln |\csc \theta - \cot \theta| + C \] ### Step 4: Substitute back to \( x \) Now, we need to substitute back to \( x \): - Since \( x = \sin \theta \), we have \( \csc \theta = \frac{1}{x} \) and \( \cot \theta = \frac{\sqrt{1 - x^2}}{x} \). Thus: \[ \int \frac{1}{x \sqrt{1 - x^2}} \, dx = \ln \left| \frac{1}{x} - \frac{\sqrt{1 - x^2}}{x} \right| + C = \ln \left| \frac{1 - \sqrt{1 - x^2}}{x} \right| + C \] ### Step 5: Combine results Putting it all together: \[ I = -\frac{\sin^{-1} x}{x} + \ln \left| \frac{1 - \sqrt{1 - x^2}}{x} \right| + C \] ### Final Answer Thus, the final result for the integral is: \[ \int \frac{\sin^{-1} x}{x^2} \, dx = -\frac{\sin^{-1} x}{x} + \ln \left| \frac{1 - \sqrt{1 - x^2}}{x} \right| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(m)FAQ|9 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(m) LONG ANSWER TYPE QUESTION (I)|6 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(j) LONG ANSWER TYPE QUESTION (I)|5 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(sin^(-1)x)/(x^2)\ dx

Evaluate the following integrals: int(sin^(-1)x)/(x^(2))dx

int (sin^(-1)x)/((l -x^(2))^(3//2)) dx

int (sin ^ (- 1) x) / (x ^ (2)) dx

int (sin ^ (- 1) x) / (x ^ (2)) dx

int (sin^-1x)/sqrt(1-x^2) dx.

int (sin ^ (- 1) x) / ((1-x ^ (2)) ^ ((3) / (2))) dx

Evaluate: int(sin^(-1)x)/((1-x^(2))^(3/2))dx

int x^2 sin^-1 x dx

Evaluate: inte^(sin^-1x)/sqrt (1-x^2)dx