Home
Class 12
MATHS
Evaluate the following integrals: (i) ...

Evaluate the following integrals:
(i) `int_2^3 x^2 dx`
(ii) `int_1^3 x/((x+1)(x+2)) dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's evaluate the given integrals step by step. ### (i) Evaluate the integral \( \int_2^3 x^2 \, dx \) 1. **Find the antiderivative**: The antiderivative of \( x^2 \) is \( \frac{x^3}{3} \). 2. **Apply the limits**: We will evaluate the antiderivative from 2 to 3: \[ \left[ \frac{x^3}{3} \right]_2^3 = \frac{3^3}{3} - \frac{2^3}{3} \] 3. **Calculate the values**: \[ = \frac{27}{3} - \frac{8}{3} = \frac{27 - 8}{3} = \frac{19}{3} \] Thus, the value of the integral \( \int_2^3 x^2 \, dx = \frac{19}{3} \). ### (ii) Evaluate the integral \( \int_1^3 \frac{x}{(x+1)(x+2)} \, dx \) 1. **Partial Fraction Decomposition**: We can express \( \frac{x}{(x+1)(x+2)} \) as: \[ \frac{x}{(x+1)(x+2)} = \frac{A}{x+1} + \frac{B}{x+2} \] Multiplying through by the denominator \( (x+1)(x+2) \) gives: \[ x = A(x+2) + B(x+1) \] Expanding the right side: \[ x = Ax + 2A + Bx + B = (A + B)x + (2A + B) \] Setting coefficients equal: - For \( x \): \( A + B = 1 \) - For the constant term: \( 2A + B = 0 \) 2. **Solve the system of equations**: From \( A + B = 1 \), we can express \( B = 1 - A \). Substituting into the second equation: \[ 2A + (1 - A) = 0 \implies A + 1 = 0 \implies A = -1 \] Then substituting back to find \( B \): \[ B = 1 - (-1) = 2 \] Thus, we have: \[ \frac{x}{(x+1)(x+2)} = \frac{-1}{x+1} + \frac{2}{x+2} \] 3. **Rewrite the integral**: \[ \int_1^3 \left( \frac{-1}{x+1} + \frac{2}{x+2} \right) \, dx \] This can be split into two integrals: \[ = -\int_1^3 \frac{1}{x+1} \, dx + 2\int_1^3 \frac{1}{x+2} \, dx \] 4. **Evaluate the integrals**: - The integral \( \int \frac{1}{x+1} \, dx = \ln|x+1| \) - The integral \( \int \frac{1}{x+2} \, dx = \ln|x+2| \) Therefore: \[ -\left[ \ln|x+1| \right]_1^3 + 2\left[ \ln|x+2| \right]_1^3 \] 5. **Calculate each part**: - For \( -\left[ \ln|x+1| \right]_1^3 \): \[ -(\ln(4) - \ln(2)) = -\ln(4/2) = -\ln(2) \] - For \( 2\left[ \ln|x+2| \right]_1^3 \): \[ 2(\ln(5) - \ln(3)) = 2\ln(5/3) \] 6. **Combine the results**: \[ -\ln(2) + 2\ln(5/3) = -\ln(2) + \ln((5/3)^2) = -\ln(2) + \ln(25/9) \] \[ = \ln\left(\frac{25/9}{2}\right) = \ln\left(\frac{25}{18}\right) \] Thus, the value of the integral \( \int_1^3 \frac{x}{(x+1)(x+2)} \, dx = \ln\left(\frac{25}{18}\right) \). ### Summary of Results 1. \( \int_2^3 x^2 \, dx = \frac{19}{3} \) 2. \( \int_1^3 \frac{x}{(x+1)(x+2)} \, dx = \ln\left(\frac{25}{18}\right) \)
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(n) SHORT ANSWER TYPE QUESTIONS|43 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) FAQ|23 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(m) LONG ANSWER TYPE QUESTION (I)|6 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integral: int_1^2|x-3|dx

Evaluate each of the following integral: int_2^3 1/x dx

Evaluate the following integral: int_1^3|x^2-2x|dx

Evaluate the following integral: int_1^2(3x)/(9x^2-1)dx

Evaluate the following integral: int_(1)^(3)|x^(2)-4|dx

Evaluate the following integral: int_(-1)^2|2x+3|dx

Evaluate the following integral: int_1^2x\ sqrt(3x-2)\ dx

Evaluate the following integrals: int(2-3x)(3+2x)(1-2x)dx

(i) int_1^3 (3x)/(9x^2-1) dx (ii) int_2^3 x/(x^2+1) dx

Evaluate the following integration int(x^(4))/(1+x^(2))dx