Home
Class 12
MATHS
Evaluate the following: int0^pi cos x ...

Evaluate the following:
`int_0^pi cos x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_0^{\pi} \cos x \, dx \), we will follow these steps: ### Step 1: Identify the Integral We need to evaluate the definite integral of the function \( \cos x \) from 0 to \( \pi \). ### Step 2: Find the Antiderivative The antiderivative of \( \cos x \) is \( \sin x \). Therefore, we can write: \[ \int \cos x \, dx = \sin x + C \] where \( C \) is the constant of integration. ### Step 3: Evaluate the Definite Integral Now we will evaluate the definite integral from 0 to \( \pi \): \[ \int_0^{\pi} \cos x \, dx = \left[ \sin x \right]_0^{\pi} \] ### Step 4: Substitute the Limits Now we substitute the upper and lower limits into the antiderivative: \[ = \sin(\pi) - \sin(0) \] ### Step 5: Calculate the Values We know that: \[ \sin(\pi) = 0 \quad \text{and} \quad \sin(0) = 0 \] Thus, we have: \[ = 0 - 0 = 0 \] ### Final Answer Therefore, the value of the integral \( \int_0^{\pi} \cos x \, dx \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(n) SHORT ANSWER TYPE QUESTIONS|43 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) FAQ|23 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(m) LONG ANSWER TYPE QUESTION (I)|6 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following int_(0)^(2)|x cos pi x|dx

int_0^pi (cos^2x)dx ,

Evaluate the following: int_0^(pi/2)dx/(1+2cos^2x)

Evaluate the following : int_(0)^(pi//4)(dx)/(3+4 cos^(2)x)dx

Evaluate the following : int_(0)^(pi)(x tan x)/(secx+cos x)dx

Evaluate the following : int_(0)^(pi//2)(dx)/(a^(2)cos^(2)x+b^(2)sin^(2)x)

Evaluate the following : int_(0)^(pi//2)sqrt(1- cos x)dx

Evaluate the following integral: int_0^pi(xtanx)/(secx\ cos e c\ x)dx

Evaluate the following : int_(0)^(pi//4)(sin 2x)/(sin^(4)x+cos^(4)x)dx.

Evaluate the following integral: int_0^pilog(1-cos x)dx