Home
Class 12
MATHS
Evaluate : int0^2 (2x^2+3x+1)dx by sec...

Evaluate :
`int_0^2 (2x^2+3x+1)dx` by second Fundamental Theorem.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_0^2 (2x^2 + 3x + 1) \, dx \) using the second Fundamental Theorem of Calculus, we will follow these steps: ### Step 1: Identify the function to integrate The function we want to integrate is: \[ f(x) = 2x^2 + 3x + 1 \] ### Step 2: Find the antiderivative of \( f(x) \) To find the antiderivative \( F(x) \), we integrate each term of \( f(x) \): 1. The antiderivative of \( 2x^2 \) is \( \frac{2}{3}x^3 \). 2. The antiderivative of \( 3x \) is \( \frac{3}{2}x^2 \). 3. The antiderivative of \( 1 \) is \( x \). Thus, the antiderivative \( F(x) \) is: \[ F(x) = \frac{2}{3}x^3 + \frac{3}{2}x^2 + x \] ### Step 3: Evaluate \( F(x) \) at the bounds Now, we will evaluate \( F(x) \) at the upper limit \( x = 2 \) and the lower limit \( x = 0 \): 1. Calculate \( F(2) \): \[ F(2) = \frac{2}{3}(2^3) + \frac{3}{2}(2^2) + 2 \] \[ = \frac{2}{3}(8) + \frac{3}{2}(4) + 2 \] \[ = \frac{16}{3} + 6 + 2 \] \[ = \frac{16}{3} + \frac{18}{3} + \frac{6}{3} = \frac{40}{3} \] 2. Calculate \( F(0) \): \[ F(0) = \frac{2}{3}(0^3) + \frac{3}{2}(0^2) + 0 = 0 \] ### Step 4: Apply the second Fundamental Theorem of Calculus According to the second Fundamental Theorem of Calculus: \[ \int_a^b f(x) \, dx = F(b) - F(a) \] Substituting our values: \[ \int_0^2 (2x^2 + 3x + 1) \, dx = F(2) - F(0) = \frac{40}{3} - 0 = \frac{40}{3} \] ### Final Result Thus, the value of the integral is: \[ \int_0^2 (2x^2 + 3x + 1) \, dx = \frac{40}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(n) SHORT ANSWER TYPE QUESTIONS|43 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) FAQ|23 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(m) LONG ANSWER TYPE QUESTION (I)|6 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_0^1 x/(1+x^2) dx

Evaluate: int_0^2 |x^2+2x-3| dx

Evaluate int_0^1 (x^2+2)/(x^2+1)dx

Evaluate int_0^2 |1-x| dx

Evaluate : int_0^2(dx)/((1-x)^2)

Evaluate: int_0^1log(x^2+x+1)dx

int_0^1(2^(2-3x))dx=?

Evaluate: int_0^pi x/(a^2-cos^2x)dx

Evaluate int_(0)^(2) |x^2-3x+2|dx

Evaluate : int(x^(2)+3x-1)/(2x)dx