Home
Class 12
MATHS
IF int0^a sqrtx dx=2a int0^(pi//2) sin^3...

IF `int_0^a sqrtx dx=2a int_0^(pi//2) sin^3 x dx,` find `int_a^(a+1) x dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the value of the integral \( \int_a^{a+1} x \, dx \) given that \[ \int_0^a \sqrt{x} \, dx = 2a \int_0^{\frac{\pi}{2}} \sin^3 x \, dx. \] ### Step 1: Calculate \( \int_0^a \sqrt{x} \, dx \) The integral can be computed as follows: \[ \int_0^a \sqrt{x} \, dx = \int_0^a x^{\frac{1}{2}} \, dx = \left[ \frac{x^{\frac{3}{2}}}{\frac{3}{2}} \right]_0^a = \left[ \frac{2}{3} x^{\frac{3}{2}} \right]_0^a = \frac{2}{3} a^{\frac{3}{2}}. \] ### Step 2: Calculate \( \int_0^{\frac{\pi}{2}} \sin^3 x \, dx \) To compute \( \int_0^{\frac{\pi}{2}} \sin^3 x \, dx \), we can use the reduction formula or a known result. The integral can be evaluated as: \[ \int_0^{\frac{\pi}{2}} \sin^3 x \, dx = \frac{3}{4}. \] ### Step 3: Set up the equation Now substituting the results back into the original equation: \[ \frac{2}{3} a^{\frac{3}{2}} = 2a \cdot \frac{3}{4}. \] This simplifies to: \[ \frac{2}{3} a^{\frac{3}{2}} = \frac{3}{2} a. \] ### Step 4: Solve for \( a \) We can simplify this equation: \[ \frac{2}{3} a^{\frac{3}{2}} - \frac{3}{2} a = 0. \] Factoring out \( a \): \[ a \left( \frac{2}{3} a^{\frac{1}{2}} - \frac{3}{2} \right) = 0. \] This gives us two solutions: 1. \( a = 0 \) (not valid in this context) 2. \( \frac{2}{3} a^{\frac{1}{2}} = \frac{3}{2} \) Solving for \( a \): \[ 2a^{\frac{1}{2}} = \frac{9}{2} \implies a^{\frac{1}{2}} = \frac{9}{4} \implies a = \left(\frac{9}{4}\right)^2 = \frac{81}{16}. \] ### Step 5: Calculate \( \int_a^{a+1} x \, dx \) Now we need to compute \( \int_a^{a+1} x \, dx \): \[ \int_a^{a+1} x \, dx = \left[ \frac{x^2}{2} \right]_a^{a+1} = \frac{(a+1)^2}{2} - \frac{a^2}{2}. \] Calculating this gives: \[ = \frac{(a^2 + 2a + 1) - a^2}{2} = \frac{2a + 1}{2}. \] Substituting \( a = \frac{81}{16} \): \[ = \frac{2 \cdot \frac{81}{16} + 1}{2} = \frac{\frac{162}{16} + \frac{16}{16}}{2} = \frac{\frac{178}{16}}{2} = \frac{178}{32} = \frac{89}{16}. \] ### Final Answer Thus, the value of \( \int_a^{a+1} x \, dx \) is \[ \frac{89}{16}. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(n) SHORT ANSWER TYPE QUESTIONS|43 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) FAQ|23 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(m) LONG ANSWER TYPE QUESTION (I)|6 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi/2) sin x dx

int_0^(pi/2) sin^6x dx

int_0^(pi) sin3x dx=2/3

int_(0)^( pi/2)(sin x)*dx

int_0^(pi/2) sin x sin 2x dx

Evaluate int_0^(pi/2) sin^7x dx

int_(0)^(pi) [2sin x]dx=

(i) int_0^(pi/2) sin^2 x dx (ii) int_0^(pi//2) cos^2 x dx

int_0^pi x/(1+sin x) dx