Home
Class 12
MATHS
Prove that int e^x (tan^-1 x+1/(1+x^2)) ...

Prove that `int e^x (tan^-1 x+1/(1+x^2)) dx=e^x tan^-1x+c`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \[ \int e^x \left( \tan^{-1} x + \frac{1}{1+x^2} \right) dx = e^x \tan^{-1} x + C, \] we will use integration by parts and the properties of derivatives. ### Step 1: Identify the functions for integration by parts Let: - \( u = \tan^{-1} x \) - \( dv = e^x dx \) ### Step 2: Differentiate and integrate Now, we need to find \( du \) and \( v \): - Differentiate \( u \): \[ du = \frac{1}{1+x^2} dx \] - Integrate \( dv \): \[ v = e^x \] ### Step 3: Apply integration by parts formula The integration by parts formula is given by: \[ \int u \, dv = uv - \int v \, du \] Substituting our values into this formula: \[ \int e^x \tan^{-1} x \, dx = e^x \tan^{-1} x - \int e^x \cdot \frac{1}{1+x^2} \, dx \] ### Step 4: Combine the integrals Now we can rewrite the original integral: \[ \int e^x \left( \tan^{-1} x + \frac{1}{1+x^2} \right) dx = \int e^x \tan^{-1} x \, dx + \int e^x \cdot \frac{1}{1+x^2} \, dx \] Substituting the result from the integration by parts: \[ = \left( e^x \tan^{-1} x - \int e^x \cdot \frac{1}{1+x^2} \, dx \right) + \int e^x \cdot \frac{1}{1+x^2} \, dx \] ### Step 5: Simplify the expression Notice that the two integrals \( \int e^x \cdot \frac{1}{1+x^2} \, dx \) cancel out: \[ = e^x \tan^{-1} x + C \] ### Conclusion Thus, we have shown that: \[ \int e^x \left( \tan^{-1} x + \frac{1}{1+x^2} \right) dx = e^x \tan^{-1} x + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise VERY SHORT ANSWER TYPE QUESTONS|25 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7.1|29 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise FILL IN THE BLANKS|15 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

inte^x(tan^-1x+1/(1+x^(2)))dx

inte^(tan^-1x)(1+x/(1+x^2))dx

int e^(tan^(-1)x)((1)/(1+x^(2)))dx=

Prove that int_0^1 tan^-1((2x-1)/(1+x-x^2))dx=0

int (e^(m tan^(-1) x))/(1+x^(2)) dx=?

int(e^(tan^(-1)x))/(1+x^(2))dx

int(e^(tan^(-1)x))/(1+x^(2))dx

int(e^(m tan^(-1)x))/(1+x^(2))dx

int(e^(a tan^(-1)x))/(1+x^(2))dx

int(e^(a tan^(-1)x))/(1+x^(2))dx