Home
Class 12
MATHS
int e^x ((1+xlogx)/x)dx=e^x (mlog x) +c,...

`int e^x ((1+xlogx)/x)dx=e^x (mlog x) +c`, then m=

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^x \left( \frac{1 + x \log x}{x} \right) dx \) and find the value of \( m \) in the expression \( e^x (m \log x) + c \), we can follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ \int e^x \left( \frac{1 + x \log x}{x} \right) dx \] This can be rewritten as: \[ \int e^x \left( \frac{1}{x} + \log x \right) dx \] ### Step 2: Split the integral We can split the integral into two parts: \[ \int e^x \left( \frac{1}{x} \right) dx + \int e^x \log x \, dx \] ### Step 3: Use integration by parts for the second integral For the second integral \( \int e^x \log x \, dx \), we will use integration by parts. Let: - \( u = \log x \) (then \( du = \frac{1}{x} dx \)) - \( dv = e^x dx \) (then \( v = e^x \)) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \), we have: \[ \int e^x \log x \, dx = e^x \log x - \int e^x \cdot \frac{1}{x} \, dx \] ### Step 4: Combine the integrals Now, substituting back into our original integral: \[ \int e^x \left( \frac{1}{x} + \log x \right) dx = \int e^x \frac{1}{x} \, dx + \left( e^x \log x - \int e^x \frac{1}{x} \, dx \right) \] This simplifies to: \[ \int e^x \frac{1}{x} \, dx + e^x \log x - \int e^x \frac{1}{x} \, dx = e^x \log x \] ### Step 5: Write the final expression Thus, we have: \[ \int e^x \left( \frac{1 + x \log x}{x} \right) dx = e^x \log x + C \] ### Step 6: Compare with the given expression We are given that: \[ \int e^x \left( \frac{1 + x \log x}{x} \right) dx = e^x (m \log x) + C \] By comparing both expressions, we see that: \[ e^x \log x = e^x (m \log x) \] This implies that \( m = 1 \). ### Final Answer Thus, the value of \( m \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise VERY SHORT ANSWER TYPE QUESTONS|25 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7.1|29 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise FILL IN THE BLANKS|15 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

inte^(x)((1+xlogx)/(x))dx=?

Assertion (A) : int(e^(x))/(x) (1 + x log x) dx = e^(x) log x +c. Reason (R) : int e^(x) [f(x) + f'(x)] dx = e^(x) f(x) + c

int_(1)^(e)e^(x)((1+xlogx)/(x))dx

inte^x/((1+e^x)(e+e^x))dx

inte^(x)(e^(x)-e^(-x))dx=

int (e^x+1)/(e^x-1)dx=

int(e^(-x))/(1+e^(x))dx=

Show that : e^( int ( dx /( xlogx ) )) = e^( log(logx )) = log x

int(e^x dx)/(1-e^(x))