Home
Class 12
MATHS
Show that int 1/(x^2-16)dx=1/8 log |(x-4...

Show that `int 1/(x^2-16)dx=1/8 log |(x-4)/(x+4)|+c`

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise VERY SHORT ANSWER TYPE QUESTONS|25 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7.1|29 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise FILL IN THE BLANKS|15 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

prove that int(1)/(x(x^(4)+1))dx=(1)/(4)log((x^(4))/(x^(4)+1))+c

If f((3t-4)/(3t+4))=t+2 then int f(x)dx= (A) e^(x-2)log((3x-4)/(3x+4))(B)-(8)/(3)log|1-x|+2(x)/(3)+c(C)(8)/(3)log|1-x|+(x)/(3)+c(D)e^(x+2)log|(1+x)/(1-x)|+c

Find the integral int(1)/(4x^(2)+12x+5)dx A. (1)/(4)log|(2x+1)/(2x-5)|+C B. (1)/(8)log|(1+2x)/(5-2x)|+C C. (1)/(8)log|(2x-1)/(2x+5)|+C D. (1)/(4)log|(1-2x)/(5+2x)|+C

Show that :int_(0)^(1)(log x)/((1+x))dx=-int_(0)^(1)(log(1+x))/(x)dx

Show that (d)/(dx)int_(x^(2))^(x^(2))(1)/(log t)dt=(1)/(log x)(x^(2)-x)

int_(1)^(2)((1+log x)^(4))/(x)dx

int_(1)^(2)((1+log x)^(4))/(x)dx

int x^(4)(1+log x)dx

Evaluate int sqrt(x^(2)+1)(log(x^(2)+1)-2log x)/(x^(4))dx