Home
Class 12
MATHS
int x sec^2x dx...

`int x sec^2x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x \sec^2 x \, dx \), we will use the method of integration by parts. ### Step-by-Step Solution: 1. **Identify \( u \) and \( dv \)**: We choose: \[ u = x \quad \text{and} \quad dv = \sec^2 x \, dx \] 2. **Differentiate \( u \) and Integrate \( dv \)**: Now we differentiate \( u \) and integrate \( dv \): \[ du = dx \quad \text{and} \quad v = \int \sec^2 x \, dx = \tan x \] 3. **Apply the Integration by Parts Formula**: The integration by parts formula is given by: \[ \int u \, dv = uv - \int v \, du \] Substituting our values: \[ \int x \sec^2 x \, dx = x \tan x - \int \tan x \, dx \] 4. **Integrate \( \tan x \)**: We know that: \[ \int \tan x \, dx = -\ln |\cos x| + C \] Therefore, substituting this back into our equation: \[ \int x \sec^2 x \, dx = x \tan x - (-\ln |\cos x|) + C \] Simplifying this gives: \[ \int x \sec^2 x \, dx = x \tan x + \ln |\cos x| + C \] ### Final Answer: \[ \int x \sec^2 x \, dx = x \tan x + \ln |\cos x| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7.7|9 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7.8|17 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7.5|23 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

(i) int x sec^2 x dx (ii) int x cos^2 x dx

Integrate : int ( sec^2x dx )/ ( cosec^2x )

int_(-pi)^(pi) tan x sec^(2) x dx = _________.

int (1+sec^2x)dx

int e^tanx sec^2x dx

int " x sec"^(2) " x dx "

int " x sec"^(2) " x dx "

int x^3 sec^2(x^4)dx=

int sec^(2) x cosec^(2) x dx