Home
Class 12
MATHS
In the figure, M is the mid - point of [...

In the figure, M is the mid - point of [AB] and N is the mid - point of [CD] and O is the mid - point of [MN]. Prove that :
(i) `vec(OA)+vec(OB)+vec(OC)+vec(OD)=vec(0)`
(ii) `vec(BC)+vec(AD)=2vec(MN)`.

Text Solution

Verified by Experts

The correct Answer is:
(i) `vec(0)`
(ii) `2 vec(MN)`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Frequently Asked Questions (Example)|40 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Questions From NCERT Exemplar (Example)|3 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

ABC is any triangle.P is the mid-point of BC,Q is the mid-point of CAand R is the mid-point of AB.The expression vec AP+vec BQ+vec CR equals

ABCDE is a pentagon prove that vec(AB)+vec(BC)+vec(CD)+vec(DE)+vec(EA)=vec0

ABCDEF is a regular hexagon. Show that : vec(OA)+vec(OB)+vec(OC)+vec(OD)+vec(OE)+vec(OF)=vec(0)

If D E and F be the mid ponts of the sides BC, CA and AB respectively of the /_\ABC and O be any point, then prove that vec(OA)+vec(OB)+vec(OC)=vec(OD)+vec(OE)+vec(OF)

If C is the mid point of AB and P is any point outside AB then (A) vec(PA)+vec(PB)+vec(PC)=0 (B) vec(PA)+vec(PB)+2vec(PC)=vec0 (C) vec(PA)+vec(PB)=vec(PC) (D) vec(PA)+vec(PB)=2vec(PC)

If A,B,C,D are any four points in space prove that vec(AB)xxvec(CD)+vec(BC)xvec(AD)+vec(CA)xxvec(BD)=2vec(AB)xxvec(CA)

Let O be the centre of the regular hexagon ABCDEF then find vec(OA)+vec(OB)+vec(OD)+vec(OC)+vec(OE)+vec(OF)

If D is the mid-point of the side BC of a triangle ABC, prove that vec AB+vec AC=2vec AD .

In a regular hexagon ABCDEF, prove that vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=3vec(AD)

ABCD is parallelogram and P is the point of intersection of its diagonals.If O is the origin of reference,show that vec OA+vec OB+vec OC+vec OD=4vec OP