Home
Class 12
MATHS
(a) What is the geometric significance o...

(a) What is the geometric significance of the relation `|vec(a)+vec(b)|=|vec(a)-vec(b)|` ?
(b) Prove geometrically that `|vec(a)+vec(b)|le |vec(a)|+|vec(b)|`.

Text Solution

Verified by Experts

The correct Answer is:
(a) `= |vec(a)-vec(b)|`
(b) `= |vec(a)|+|vec(b)|`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Frequently Asked Questions (Example)|40 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Questions From NCERT Exemplar (Example)|3 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Prove that |vec(a)|-|vec(b)|le |vec(a)-vec(b)| .

The inequality |vec(a).vec(b)|le |vec(a)||vec(b)| is called :

If |vec(a)+vec(b)|=|vec(a)-vec(b)| , prove that vec(a) and vec(b) are perpendicular.

Prove that (vec(a) + vec(b)) xx (vec(a) - vec(b)) = 2 (vec(b) xx vec(a))

If vec(a).vec(b)=0 and vec(a) xx vec(b)=0, " prove that " vec(a)= vec(0) or vec(b)=vec(0) .

Consider the following inequalities in respect of vector vec(a) and vec(b) 1. |vec(a) + vec(b)| le |vec(a)| + |vec(b)| 2. |vec(a) - vec(b)| ge |vec(a)|- |vec(b)| Which of the above is/are correct?

Prove that (vec(a)-vec(b)) xx (vec(a) +vec(b))=2(vec(a) xx vec(b))

Show that vec(a)xx vec(b)=vec(a)xx vec(c ) does not imply vec(b)=vec(c ) . Illustrate geometrically.

Two vectors vec(a) and vec(b) are such that |vec(a)+vec(b)|=|vec(a)-vec(b)| . What is the angle between vec(a) and vec(b) ?

Let vec(a) and vec(b) be two nonzero vector. Prove that vec(a) bot vec(b) hArr |vec(a)+vec(b)|=|vec(a)-vec(b)| .