Home
Class 12
MATHS
If D ,\ E ,\ F are the mid points of the...

If `D ,\ E ,\ F` are the mid points of the side `B C ,\ C A` and `A B` respectively of a triangle ABC, write the value of ` vec A D+ vec B E+ vec C Fdot`

Text Solution

Verified by Experts

The correct Answer is:
`2:1`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Frequently Asked Questions (Example)|40 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Questions From NCERT Exemplar (Example)|3 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

If D,E,F are the mid points of the side BC,CA and AB respectively of a triangle ABC,write the value of vec AD+vec BE+vec CF

If O is a point in space, A B C is a triangle and D , E , F are the mid-points of the sides B C ,C A and A B respectively of the triangle, prove that vec O A + vec O B+ vec O C= vec O D+ vec O E+ vec O Fdot

If D,E and F are the mid-points of the sides BC, CA and AB respectively of a triangle ABC and lambda is scalar, such that vec(AD) + 2/3vec(BE)+1/3vec(CF)=lambdavec(AC) , then lambda is equal to

Let vec a,vec b,vec c form sides BC,CA and AB respectively of a triangle ABC then

D, E and F are the mid-points of the sides BC, CA and AB respectively of Delta ABC and G is the centroid of the triangle, then vec(GD) + vec(GE) + vec(GF) =

D ,\ E ,\ F are the mid-point of the sides B C ,\ C A\ a n d\ A B respectively of A B Cdot Then D E F is congruent to triangle. A B C (b) AEF (c) B F D ,\ C D E (d) A F E ,\ B F D ,\ C D E

If D, E, F are respectively the mid-points of AB, AC and BC respectively in a Delta ABC, " then " vec (BE) + vec(AF) =

If the vectors vec a , vec b ,a n d vec c form the sides B C ,C Aa n dA B , respectively, of triangle A B C ,t h e n vec adot vec b+ vec bdot vec c+ vec cdot vec a=0 b. vec axx vec b= vec bxx vec c= vec cxx vec a c. vec adot vec b= vec bdot vec c= vec cdot vec a d. vec axx vec b+ vec bxx vec c+ vec cxx vec a=0

If D E and F be the mid ponts of the sides BC, CA and AB respectively of the /_\ABC and O be any point, then prove that vec(OA)+vec(OB)+vec(OC)=vec(OD)+vec(OE)+vec(OF)