Home
Class 12
MATHS
Prove that in any triangle ABC(i) c^2 = ...

Prove that in any triangle ABC(i) `c^2 = a^2 + b^2-2ab cos C` (ii) `c=bcosA+acosB`

Text Solution

Verified by Experts

The correct Answer is:
`c=a cos B + b cos A`
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Frequently Asked Questions (Example)|40 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Questions From NCERT Exemplar (Example)|3 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Prove that in any triangle ABC(i) c^(2)=a^(2)+b^(2)-2ab cos C( ii) c=b cos A+a cos B

Prove that, in a triangle ABC, b(a cos C - c cos A) = a^2 - c^2

Using vector method prove that in any triangle ABC a^2=b^2+c^2-2bc cos A .

Prove in any triangle ABC that (i) a^(2)+b^(2)+c^(2)=2(bc cos A +ca cos B+ ab cos C) (ii) (b+c) cos A+(c+a)cos B+(a+b) cos C = a+b+c .

Prove that in triangle ABC,cos^(2)A+cos^(2)B-cos^(2)C=1-2sin A sin B cos C

In triangle ABC , prove that (1) a=b cos C+c cos B (2) b=a cos C+c cos A .

In any triangle ABC, (a+b)^2 sin^2 ((C )/(2))+(a-b)^2 cos^2 ((C )/(2))= .

In triangle ABC , prove that c=acosB +bcosA .

Prove in any triangle ABC that (i) a(cos B+cos C)=2(b+c) "sin"^(2)(A)/(2) (ii) a(cos C- cosB)= 2(b-c )"cos"^(2)(A)/(2)

Statement I If in a triangle ABC sin ^(2) A+sin ^(2)B+sin ^(2)C=2, then one of the angle must be 90^(@). Statement II In any triangles ABC cos 2A+ cos 2B+cos 2C=-1-4 cos A cos B cos C