Home
Class 12
MATHS
Two unlike forces of equal magnitudes 3h...

Two unlike forces of equal magnitudes `3hat(i)+hat(k)` and `-3hat(i)-hat(k)` acting at the points `hat(i)+2hat(j)-hat(k)` and `2hat(i)-hat(j)+3hat(k)` respectively. Find the moment of the coupie formed by the forces.

Text Solution

AI Generated Solution

The correct Answer is:
To find the moment of the couple formed by the two forces, we will follow these steps: ### Step 1: Identify the Forces and Points We have two forces: - **Force F1**: \( \vec{F_1} = 3\hat{i} + \hat{k} \) acting at point \( A = \hat{i} + 2\hat{j} - \hat{k} \) - **Force F2**: \( \vec{F_2} = -3\hat{i} - \hat{k} \) acting at point \( B = 2\hat{i} - \hat{j} + 3\hat{k} \) ### Step 2: Calculate the Position Vector from A to B The position vector \( \vec{r} \) from point A to point B is given by: \[ \vec{r} = \vec{B} - \vec{A} = (2\hat{i} - \hat{j} + 3\hat{k}) - (\hat{i} + 2\hat{j} - \hat{k}) \] Calculating this: \[ \vec{r} = (2 - 1)\hat{i} + (-1 - 2)\hat{j} + (3 + 1)\hat{k} = \hat{i} - 3\hat{j} + 4\hat{k} \] ### Step 3: Calculate the Moment of the Couple The moment of the couple \( \vec{M} \) is given by the cross product of the position vector \( \vec{r} \) and one of the forces. We can use either force; here we will use \( \vec{F_1} \): \[ \vec{M} = \vec{r} \times \vec{F_1} \] Substituting the values: \[ \vec{M} = (\hat{i} - 3\hat{j} + 4\hat{k}) \times (3\hat{i} + \hat{k}) \] ### Step 4: Compute the Cross Product Using the determinant method for the cross product: \[ \vec{M} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & 4 \\ 3 & 0 & 1 \end{vmatrix} \] Calculating this determinant: \[ \vec{M} = \hat{i} \begin{vmatrix} -3 & 4 \\ 0 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 4 \\ 3 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & -3 \\ 3 & 0 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} -3 & 4 \\ 0 & 1 \end{vmatrix} = (-3)(1) - (0)(4) = -3 \) 2. \( \begin{vmatrix} 1 & 4 \\ 3 & 1 \end{vmatrix} = (1)(1) - (4)(3) = 1 - 12 = -11 \) 3. \( \begin{vmatrix} 1 & -3 \\ 3 & 0 \end{vmatrix} = (1)(0) - (-3)(3) = 0 + 9 = 9 \) Putting it all together: \[ \vec{M} = -3\hat{i} + 11\hat{j} + 9\hat{k} \] ### Step 5: Final Result Thus, the moment of the couple is: \[ \vec{M} = -3\hat{i} + 11\hat{j} + 9\hat{k} \] ### Step 6: Magnitude of the Moment To find the magnitude of the moment: \[ |\vec{M}| = \sqrt{(-3)^2 + (11)^2 + (9)^2} = \sqrt{9 + 121 + 81} = \sqrt{211} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Frequently Asked Questions (Example)|40 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Questions From NCERT Exemplar (Example)|3 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Two unlike force of equal magnitudes hat(j)+2hat(k) and -hat(j)-2hat(k) are acting at the points whose position vectors are given by hat(i)+hat(j)+hat(k) and hat(i)+2hat(j)+3hat(k) respectively. Find the moment of the couple formed by these forces.

The two vectors A=2hat(i)+hat(j)+3hat(k) and B=7hat(i)-5hat(j)-3hat(k) are :-

The angle between the vectors : vec(a)=hat(i)+2hat(j)-3hat(k) and 3hat(i)-hat(j)+2hat(k) is :

Find the vector projection of the vector : 7hat(i)+hat(j)-hat(k) on 2hat(i)+6hat(j)+3hat(k)

Find the torque of a force F=-3hat(i)+2hat(j)+hat(k) acting at the point r=8hat(i)+2hat(j)+3hat(k),(iftau=rxxF)

The ratio in which hat(i)+2hat(j)+3hat(k) divides the join of -2hat(i)+ 3hat(j)+5hat(k) and 7hat(i)-hat(k) is

The force respresented by 3hat(i)+2hat(k) is acting through the point 5hat(i)+4hat(j)-3hat(k) . Find the moment about the point hat(i)+3hat(j)+hat(k) .

Find a unit vector perpendicular to A=2hat(i)+3hat(j)+hat(k) and B=hat(i)-hat(j)+hat(k) both.

Find the angle between the vectors hat i-2hat j+3hat k and 3hat i-2hat j+hat k