Home
Class 12
MATHS
Find all vectors of magnitude 10sqrt(3) ...

Find all vectors of magnitude `10sqrt(3)` that are perpendicular to the plane of `hat(i)+2hat(j)+hat(k)` and `-hat(i)+hat(j)+4hat(k)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find all vectors of magnitude \( 10\sqrt{3} \) that are perpendicular to the plane defined by the vectors \( \hat{i} + 2\hat{j} + \hat{k} \) and \( -\hat{i} + \hat{j} + 4\hat{k} \), we can follow these steps: ### Step 1: Identify the vectors Let: - \( \mathbf{A} = \hat{i} + 2\hat{j} + \hat{k} \) - \( \mathbf{B} = -\hat{i} + \hat{j} + 4\hat{k} \) ### Step 2: Find the normal vector to the plane The normal vector \( \mathbf{N} \) to the plane formed by the vectors \( \mathbf{A} \) and \( \mathbf{B} \) can be found using the cross product \( \mathbf{A} \times \mathbf{B} \). \[ \mathbf{N} = \mathbf{A} \times \mathbf{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 1 \\ -1 & 1 & 4 \end{vmatrix} \] ### Step 3: Calculate the determinant Calculating the determinant: \[ \mathbf{N} = \hat{i} \begin{vmatrix} 2 & 1 \\ 1 & 4 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 1 \\ -1 & 4 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 2 \\ -1 & 1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} 2 & 1 \\ 1 & 4 \end{vmatrix} = (2)(4) - (1)(1) = 8 - 1 = 7 \) 2. \( \begin{vmatrix} 1 & 1 \\ -1 & 4 \end{vmatrix} = (1)(4) - (1)(-1) = 4 + 1 = 5 \) 3. \( \begin{vmatrix} 1 & 2 \\ -1 & 1 \end{vmatrix} = (1)(1) - (2)(-1) = 1 + 2 = 3 \) Putting it all together: \[ \mathbf{N} = 7\hat{i} - 5\hat{j} + 3\hat{k} \] ### Step 4: Find the magnitude of the normal vector Now, we find the magnitude of the normal vector \( \mathbf{N} \): \[ |\mathbf{N}| = \sqrt{7^2 + (-5)^2 + 3^2} = \sqrt{49 + 25 + 9} = \sqrt{83} \] ### Step 5: Find the unit normal vector The unit normal vector \( \hat{n} \) is given by: \[ \hat{n} = \frac{\mathbf{N}}{|\mathbf{N}|} = \frac{7\hat{i} - 5\hat{j} + 3\hat{k}}{\sqrt{83}} \] ### Step 6: Scale the unit normal vector to the desired magnitude To find the vectors of magnitude \( 10\sqrt{3} \), we scale the unit normal vector: \[ \mathbf{C} = 10\sqrt{3} \cdot \hat{n} = 10\sqrt{3} \cdot \frac{7\hat{i} - 5\hat{j} + 3\hat{k}}{\sqrt{83}} = \frac{70\sqrt{3}}{\sqrt{83}}\hat{i} - \frac{50\sqrt{3}}{\sqrt{83}}\hat{j} + \frac{30\sqrt{3}}{\sqrt{83}}\hat{k} \] ### Step 7: Consider the opposite direction Since the vector can point in either direction, we also have: \[ -\mathbf{C} = -\left(\frac{70\sqrt{3}}{\sqrt{83}}\hat{i} - \frac{50\sqrt{3}}{\sqrt{83}}\hat{j} + \frac{30\sqrt{3}}{\sqrt{83}}\hat{k}\right) \] ### Final Solution Thus, the vectors of magnitude \( 10\sqrt{3} \) that are perpendicular to the plane are: \[ \mathbf{C} = \frac{70\sqrt{3}}{\sqrt{83}}\hat{i} - \frac{50\sqrt{3}}{\sqrt{83}}\hat{j} + \frac{30\sqrt{3}}{\sqrt{83}}\hat{k} \] and \[ -\mathbf{C} = -\frac{70\sqrt{3}}{\sqrt{83}}\hat{i} + \frac{50\sqrt{3}}{\sqrt{83}}\hat{j} - \frac{30\sqrt{3}}{\sqrt{83}}\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (a) Short Answer Type Questions|21 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (b) Short Answer Type Questions|9 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Frequently Asked Questions (Example)|40 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Find all vectors of magnitude 10sqrt(3) that are perpendicular to the plane hat i+2 hat j+ hat k\ a n d- hat i+3 hat j+4 hat kdot

Find a vector of magnitude 15, which is perpendicular to both the vectors (4hat(i) -hat(j)+8hat(k)) and (-hat(j)+hat(k)).

Find a vector of magnitude 7 units, which is perpendicular to two vectors : 2hat(i)-hat(j)+hat(k) and hat(i)+hat(j)-hat(k) .

Find a unit vector perpendicular to the plane of two vectors a=hat(i)-hat(j)+2hat(k) and b=2hat(i)+3hat(j)-hat(k) .

Find a unit vector perpendicular to the vectors hat(j) + 2 hat(k) & hat(i) + hat(j)

Find a unit vector perpendicular to A=2hat(i)+3hat(j)+hat(k) and B=hat(i)-hat(j)+hat(k) both.

A unit vector perpendicular to each of the vectors 2hat(i) - hat(j) + hat(k ) and 3hat(i) - 4hat(i) - hat(k) is

Find a vector of magnitude 6 which is perpendicular to both the vectors vec(a)= 4 hat(i)-hat(j) + 3 hat(k) and vec(b) = -2 hat(i) + hat(j)- 2 hat(k).

A vector perpendicular to (hat(i)+hat(j)+hat(k)) and (hat(i)-hat(j)-hat(k)) is :-

Find a vector of mangitude 18 which is perpendicular to both the vector 4 hat i - hat j + 3 hat k and -2 hat i + hat j -2 hat k .