Home
Class 12
MATHS
Prove that |vec(a)|-|vec(b)|le |vec(a)-v...

Prove that `|vec(a)|-|vec(b)|le |vec(a)-vec(b)|`.

Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (c ) Short Answer Type Questions|39 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (c ) Long Answer Type Questions (I)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (a) Short Answer Type Questions|21 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

(a) What is the geometric significance of the relation |vec(a)+vec(b)|=|vec(a)-vec(b)| ? (b) Prove geometrically that |vec(a)+vec(b)|le |vec(a)|+|vec(b)| .

Let vec(a) and vec(b) be two nonzero vector. Prove that vec(a) bot vec(b) hArr |vec(a)+vec(b)|=|vec(a)-vec(b)| .

Prove that (vec(a) + vec(b)) xx (vec(a) - vec(b)) = 2 (vec(b) xx vec(a))

Prove that |vec(a) xx vec(b)|=(vec(a)*vec(b)) tan theta," where " theta is the angle between vec(a) and vec(b) .

The inequality |vec(a).vec(b)|le |vec(a)||vec(b)| is called :

Prove that (vec(a)-vec(b)) xx (vec(a) +vec(b))=2(vec(a) xx vec(b))

Prove that |vec(a)xx vec(b)|^(2)=|vec(a)|^(2)|vec(b)|^(2)-(vec(a).vec(b))^(2) =|(vec(a).vec(a),vec(a).vec(b)),(vec(a).vec(b),vec(b).vec(b))| .

Consider the following inequalities in respect of vector vec(a) and vec(b) 1. |vec(a) + vec(b)| le |vec(a)| + |vec(b)| 2. |vec(a) - vec(b)| ge |vec(a)|- |vec(b)| Which of the above is/are correct?

Establish the following vector in equalities: (i) |vec(a)-vec(b)| le |vec(a)| +|vec(b)| (ii) |vec(a) -vec(b)| ge |vec(a)| - |vec(b)| What does the equality sign apply ?

For three non-zero vectors vec(a),\vec(b) " and"vec(c ) , prove that [(vec(a)-vec(b))\ \ (vec(b)-vec(c))\ \ (vec(c )-vec(a))]=0