Home
Class 12
MATHS
Show that the vectors vec(a)=2hat(i)+3ha...

Show that the vectors `vec(a)=2hat(i)+3hat(j)` and `vec(b)=4hat(i)+6hat(j)` are parallel.

Text Solution

AI Generated Solution

The correct Answer is:
To show that the vectors \(\vec{a} = 2\hat{i} + 3\hat{j}\) and \(\vec{b} = 4\hat{i} + 6\hat{j}\) are parallel, we can use two methods. Here is the step-by-step solution: ### Method 1: Using the Dot Product 1. **Calculate the Dot Product**: \[ \vec{a} \cdot \vec{b} = (2\hat{i} + 3\hat{j}) \cdot (4\hat{i} + 6\hat{j}) \] Using the property of dot product: \[ \vec{a} \cdot \vec{b} = 2 \cdot 4 + 3 \cdot 6 = 8 + 18 = 26 \] 2. **Calculate the Magnitudes of the Vectors**: - For \(\vec{a}\): \[ |\vec{a}| = \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13} \] - For \(\vec{b}\): \[ |\vec{b}| = \sqrt{4^2 + 6^2} = \sqrt{16 + 36} = \sqrt{52} = 2\sqrt{13} \] 3. **Use the Dot Product Formula**: The formula relating the dot product to the angle \(\theta\) between the vectors is: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta \] Substituting the values we found: \[ 26 = \sqrt{13} \cdot 2\sqrt{13} \cos \theta \] Simplifying: \[ 26 = 2 \cdot 13 \cos \theta \implies 26 = 26 \cos \theta \] Therefore: \[ \cos \theta = 1 \implies \theta = 0^\circ \] 4. **Conclusion**: Since the angle \(\theta\) is \(0^\circ\), the vectors \(\vec{a}\) and \(\vec{b}\) are parallel. ### Method 2: Using Direction Ratios 1. **Identify Direction Ratios**: The direction ratios of \(\vec{a}\) are \(2\) and \(3\), and the direction ratios of \(\vec{b}\) are \(4\) and \(6\). 2. **Check if One Vector is a Scalar Multiple of the Other**: We can express \(\vec{b}\) in terms of \(\vec{a}\): \[ \vec{b} = 2 \cdot \vec{a} = 2(2\hat{i} + 3\hat{j}) = 4\hat{i} + 6\hat{j} \] 3. **Conclusion**: Since \(\vec{b}\) is a scalar multiple of \(\vec{a}\), the vectors are parallel. ### Final Conclusion: Both methods confirm that the vectors \(\vec{a}\) and \(\vec{b}\) are parallel. ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (c ) Long Answer Type Questions (I)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (c ) Long Answer Type Questions (II)|3 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (b) Short Answer Type Questions|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Show that the vectors vec(a)=(hat(i)+3hat(j)+hat(k)), vec(b)=(2hat(i)-hat(j)-hat(k)) and vec(c)=(7hat(j)+3hat(k)) are parallel to the same plane. {HINT : Show that [vec(a)vec(b)vec(c)]=0 }

Show that the vectors : vec(a)=hat(i)-2hat(j)+3hat(k), vec(b)=-2hat(i)+3hat(j)-4hat(k) and vec(c )=hat(i)-3hat(j)+5hat(k) are coplanar.

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Unit vector parallel to the resultant of vectors vec(A)= 4hat(i)-3hat(j) and vec(B)= 8hat(i)+8hat(j) will be

The area of the paralleogram represented by the vectors vec(A)= 2hat(i)+3hat(j) and vec(B)= hat(i)+4hat(j) is

The sine of the angle between vectors vec(a)=2hat(i)-6hat(j)-3hat(k) and vec(b)=4hat(i)+3hat(j)-hat(k)

Given the three vectors vec(a) = - 2hati + hat(j) + hat(k), vec(b) = hat(i) + 5hat(j) and vec(c) = 4hat(i) + 4hat(j) - 2hat(k) . The projection of the vector 3vec(a) - 2vec(b) on the vector vec(c) is

Find the angle between the vectors : vec(a)=2hat(i)-hat(j)+2hat(k) " and " vec(b)=6hat(i)+2hat(j)+3hat(k) .

Find th esine of angles between vectors vec(a)= 2hat(i) - 6hat(j) - 3hat(k), and vec(b) = 4hat(i) + 3hat(j)- hat(k) ?

The unit vactor parallel to the resultant of the vectors vec(A)=4hat(i)+3hat(j)+6hat(k) and vec(B)=-hat(i)+3hat(j)-8hat(k) is :-

MODERN PUBLICATION-VECTOR ALGEBRA -EXERCISE 10 (c ) Short Answer Type Questions
  1. Find the position vector of the mid point of the ne segment A B ,\ wh...

    Text Solution

    |

  2. Find a vector in the direction of the vector 5 hat i - hat j + 2 h...

    Text Solution

    |

  3. Find a vector in the direction of vec a=2 hat i- hat j+2 hat k , whic...

    Text Solution

    |

  4. Find a vector in the direction of : vec(a)=hat(i)-2hat(j)+2hat(k),...

    Text Solution

    |

  5. Find a vector in the direction of : vec(a)=-2hat(i)+hat(j)+2hat(k)...

    Text Solution

    |

  6. Find the scalar components and magnitude of the vector joining the po...

    Text Solution

    |

  7. If |vec(a)|=3, what is : |5vec(a)|

    Text Solution

    |

  8. If |vec(a)|=3, what is : |-2vec(a)|

    Text Solution

    |

  9. If |vec(a)|=3, what is : |0vec(a)| ?

    Text Solution

    |

  10. If vec(a)=3hat(i)-2hat(j)+hat(k), vec(b)=2hat(i)-4 hat(j)-3 hat(k), fi...

    Text Solution

    |

  11. Let vec(a) be a given vector whose initial point is P(x(1), y(1)) and ...

    Text Solution

    |

  12. In the following, find the components of the vector vec(PQ) along x an...

    Text Solution

    |

  13. If the position vectors of the points A and B are : 7hat(i)+3hat(j)-ha...

    Text Solution

    |

  14. Find the position vector of the centroid of the Delta ABC when the pos...

    Text Solution

    |

  15. Show that the vectors vec(a)=2hat(i)+3hat(j) and vec(b)=4hat(i)+6hat(...

    Text Solution

    |

  16. Find a unit vector in the direction of (vec(a)+vec(b)), where : vec(a)...

    Text Solution

    |

  17. If vec(a)=2hat(i)-hat(j)+2hat(k) and vec(b)=6hat(i)+2hat(j)+3hat(k), ...

    Text Solution

    |

  18. Find the unit vector in the direction of vec(a)-vec(b), where : ve...

    Text Solution

    |

  19. If -> a= hat i+ hat j+ hat k , -> b=2 hat i- hat j+3 hat k and -...

    Text Solution

    |

  20. (a) Find the condition that the vectors vec(a)=k hat(i)+l hat(j) and v...

    Text Solution

    |