Home
Class 12
MATHS
Find a unit vector in the direction of (...

Find a unit vector in the direction of `(vec(a)+vec(b))`, where : `vec(a)=2hat(i)+2hat(j)-5hat(k)` and `vec(b)=2hat(i)+hat(j)+3hat(k)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find a unit vector in the direction of \(\vec{a} + \vec{b}\), where \(\vec{a} = 2\hat{i} + 2\hat{j} - 5\hat{k}\) and \(\vec{b} = 2\hat{i} + \hat{j} + 3\hat{k}\), we will follow these steps: ### Step 1: Add the vectors \(\vec{a}\) and \(\vec{b}\) \[ \vec{a} + \vec{b} = (2\hat{i} + 2\hat{j} - 5\hat{k}) + (2\hat{i} + \hat{j} + 3\hat{k}) \] Combine the like terms: \[ = (2 + 2)\hat{i} + (2 + 1)\hat{j} + (-5 + 3)\hat{k} \] \[ = 4\hat{i} + 3\hat{j} - 2\hat{k} \] ### Step 2: Calculate the magnitude of the resultant vector \(\vec{a} + \vec{b}\) The magnitude (or modulus) of a vector \(\vec{v} = x\hat{i} + y\hat{j} + z\hat{k}\) is given by: \[ |\vec{v}| = \sqrt{x^2 + y^2 + z^2} \] For our resultant vector \(4\hat{i} + 3\hat{j} - 2\hat{k}\): \[ |\vec{a} + \vec{b}| = \sqrt{4^2 + 3^2 + (-2)^2} \] \[ = \sqrt{16 + 9 + 4} \] \[ = \sqrt{29} \] ### Step 3: Find the unit vector in the direction of \(\vec{a} + \vec{b}\) The unit vector \(\hat{u}\) in the direction of a vector \(\vec{v}\) is given by: \[ \hat{u} = \frac{\vec{v}}{|\vec{v}|} \] Thus, the unit vector in the direction of \(\vec{a} + \vec{b}\) is: \[ \hat{u} = \frac{4\hat{i} + 3\hat{j} - 2\hat{k}}{\sqrt{29}} \] This can be expressed as: \[ \hat{u} = \frac{4}{\sqrt{29}}\hat{i} + \frac{3}{\sqrt{29}}\hat{j} - \frac{2}{\sqrt{29}}\hat{k} \] ### Final Answer: The unit vector in the direction of \(\vec{a} + \vec{b}\) is: \[ \hat{u} = \frac{4}{\sqrt{29}}\hat{i} + \frac{3}{\sqrt{29}}\hat{j} - \frac{2}{\sqrt{29}}\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (c ) Long Answer Type Questions (I)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (c ) Long Answer Type Questions (II)|3 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (b) Short Answer Type Questions|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Find the unit vector in the direction of vec(a)-vec(b) , where : vec(a)=hat(i)+3hat(j)-hat(k), vec(b)=3hat(i)+2hat(j)+hat(k) .

Write a unit vector in the direction of the sum of the vectors : vec(a)=2hat(i)+2hat(j)-5hat(k) and vec(b)=2hat(i)+hat(j)+3hat(k) .

Find |vec(a)xx vec(b)| , if vec(a)=2hat(i)+hat(j)+3hat(k) and vec(b)=3hat(i)+5hat(j)-2hat(k) .

Find the unit vector in the direction of the sum of the vectors : vec(a) = 2hat(i)-hat(j)+2hat(k) and vec(b)=-hat(i)+hat(j)+3hat(k) .

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find the angle between the vectors vec(a) and vec(b) , when (i) vec(a)=hat(i)-2hat(j)+3 hat(k) and vec(b)=3hat(i)-2hat(j)+hat(k) (ii) vec(a)=3 hat(i)+hat(j)+2hat(k) and vec(b)=2hat(i)-2hat(j)+4 hat(k) (iii) vec(a)=hat(i)-hat(j) and vec(b)=hat(j)+hat(k) .

Find the unit vector in the direction of vec a+vec b,quad if quad vec a=2hat i-hat j+2hat k and vec b=-hat i+hat j-hat k

Find the value of lambda for which the vectors vec(a), vec(b), vec(c) are coplanar, where (i) vec(a)=(2hat(i)-hat(j)+hat(k)), vec(b) = (hat(i)+2hat(j)+3hat(k) ) and vec(c)=(3 hat(i)+lambda hat(j) + 5 hat (k)) (ii) vec(a)lambda hat(i)-10 hat(j)-5k^(2), vec(b) =-7hat(i)-5hat(j) and vec(c)= hat(i)--4hat(j)-3hat(k) (iii) vec(a)=hat(i)-hat(j)+hat(k), vec(b)= 2hat( i) + hat(j)-hat(k) and vec(c)= lambda hat(i) - hat(j) + lambda hat(k)

Write a unit vector in the direction of the sum of the vectors vec a=2hat i+2hat j-5hat k and vec b=2hat i+hat j-7hat k

Find ( vec (a) xxvec (b)) and |vec(a) xx vec (b)| ,when (i) vec(a) = hat(i)-hat(j)+ 2hat(k) and vec(b)= 2 hat(i)+3 hat(j)-4hat(k) (ii) vec(a)= 2hat (i)+hat(j)+ 3hat(k) and vec(b)= 3hat(i)+5 hat(j) - 2 hat(k) (iii) vec(a)=hat(i)- 7 hat(j)+ 7hat(k) and vec(b) = 3 hat(i)-2hat(j)+2 hat(k) (iv) vec(a)= 4hat(i)+ hat(j)- 2hat(k) and vec(b) = 3 hat(i)+hat(k) (v) vec(a) = 3 hat(i) + 4 hat(j) and vec(b) = hat(i)+hat(j)+hat(k)

MODERN PUBLICATION-VECTOR ALGEBRA -EXERCISE 10 (c ) Short Answer Type Questions
  1. Find the position vector of the mid point of the ne segment A B ,\ wh...

    Text Solution

    |

  2. Find a vector in the direction of the vector 5 hat i - hat j + 2 h...

    Text Solution

    |

  3. Find a vector in the direction of vec a=2 hat i- hat j+2 hat k , whic...

    Text Solution

    |

  4. Find a vector in the direction of : vec(a)=hat(i)-2hat(j)+2hat(k),...

    Text Solution

    |

  5. Find a vector in the direction of : vec(a)=-2hat(i)+hat(j)+2hat(k)...

    Text Solution

    |

  6. Find the scalar components and magnitude of the vector joining the po...

    Text Solution

    |

  7. If |vec(a)|=3, what is : |5vec(a)|

    Text Solution

    |

  8. If |vec(a)|=3, what is : |-2vec(a)|

    Text Solution

    |

  9. If |vec(a)|=3, what is : |0vec(a)| ?

    Text Solution

    |

  10. If vec(a)=3hat(i)-2hat(j)+hat(k), vec(b)=2hat(i)-4 hat(j)-3 hat(k), fi...

    Text Solution

    |

  11. Let vec(a) be a given vector whose initial point is P(x(1), y(1)) and ...

    Text Solution

    |

  12. In the following, find the components of the vector vec(PQ) along x an...

    Text Solution

    |

  13. If the position vectors of the points A and B are : 7hat(i)+3hat(j)-ha...

    Text Solution

    |

  14. Find the position vector of the centroid of the Delta ABC when the pos...

    Text Solution

    |

  15. Show that the vectors vec(a)=2hat(i)+3hat(j) and vec(b)=4hat(i)+6hat(...

    Text Solution

    |

  16. Find a unit vector in the direction of (vec(a)+vec(b)), where : vec(a)...

    Text Solution

    |

  17. If vec(a)=2hat(i)-hat(j)+2hat(k) and vec(b)=6hat(i)+2hat(j)+3hat(k), ...

    Text Solution

    |

  18. Find the unit vector in the direction of vec(a)-vec(b), where : ve...

    Text Solution

    |

  19. If -> a= hat i+ hat j+ hat k , -> b=2 hat i- hat j+3 hat k and -...

    Text Solution

    |

  20. (a) Find the condition that the vectors vec(a)=k hat(i)+l hat(j) and v...

    Text Solution

    |