Home
Class 12
MATHS
If vec(a)=2hat(i)-hat(j)+2hat(k) and ve...

If `vec(a)=2hat(i)-hat(j)+2hat(k)` and `vec(b)=6hat(i)+2hat(j)+3hat(k)`, find a unit vector parallel to `vec(a)+vec(b)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find a unit vector parallel to the vector \(\vec{a} + \vec{b}\), we will follow these steps: ### Step 1: Find the vectors \(\vec{a}\) and \(\vec{b}\) Given: \[ \vec{a} = 2\hat{i} - \hat{j} + 2\hat{k} \] \[ \vec{b} = 6\hat{i} + 2\hat{j} + 3\hat{k} \] ### Step 2: Calculate \(\vec{a} + \vec{b}\) Add the two vectors component-wise: \[ \vec{a} + \vec{b} = (2\hat{i} + 6\hat{i}) + (-\hat{j} + 2\hat{j}) + (2\hat{k} + 3\hat{k}) \] \[ = (2 + 6)\hat{i} + (-1 + 2)\hat{j} + (2 + 3)\hat{k} \] \[ = 8\hat{i} + 1\hat{j} + 5\hat{k} \] ### Step 3: Find the magnitude of \(\vec{a} + \vec{b}\) The magnitude of a vector \(\vec{v} = x\hat{i} + y\hat{j} + z\hat{k}\) is given by: \[ |\vec{v}| = \sqrt{x^2 + y^2 + z^2} \] For \(\vec{a} + \vec{b} = 8\hat{i} + 1\hat{j} + 5\hat{k}\): \[ |\vec{a} + \vec{b}| = \sqrt{8^2 + 1^2 + 5^2} \] \[ = \sqrt{64 + 1 + 25} \] \[ = \sqrt{90} \] \[ = 3\sqrt{10} \] ### Step 4: Find the unit vector parallel to \(\vec{a} + \vec{b}\) A unit vector in the direction of a vector \(\vec{v}\) is given by: \[ \hat{u} = \frac{\vec{v}}{|\vec{v}|} \] Thus, the unit vector parallel to \(\vec{a} + \vec{b}\) is: \[ \hat{u} = \frac{8\hat{i} + 1\hat{j} + 5\hat{k}}{3\sqrt{10}} \] ### Step 5: Write the final answer in standard form We can express the unit vector as: \[ \hat{u} = \frac{8}{3\sqrt{10}}\hat{i} + \frac{1}{3\sqrt{10}}\hat{j} + \frac{5}{3\sqrt{10}}\hat{k} \] ### Final Answer: The unit vector parallel to \(\vec{a} + \vec{b}\) is: \[ \hat{u} = \frac{8}{3\sqrt{10}}\hat{i} + \frac{1}{3\sqrt{10}}\hat{j} + \frac{5}{3\sqrt{10}}\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (c ) Long Answer Type Questions (I)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (c ) Long Answer Type Questions (II)|3 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (b) Short Answer Type Questions|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

If vec(a)=4hat(i)-hat(j)+hat(k) and vec(b)=2hat(i)-2hat(j)+hat(k) , then find a unit vector parallel to the vector vec(a)+vec(b) .

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

If vec(a)=3hat(i)-2hat(j)+hat(k), vec(b)=2hat(i)-4 hat(j)-3 hat(k) , find |vec(a)-2 vec(b)| .

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vec(a) = hat(i) + 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) + 3 hat(j) + hat(k) , find a unit vector in the direction of ( 2 vec(a) + vec(b)) .

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+2hat(j)+2hat(k) , find the magnitude of compinent of (vec(A)+vec(B)) along vec(B)

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

vec(A)=(hat(i)-2hat(j)+6hat(k)) and vec(B)=(hat(i)-2hat(j)+hat(k)) , find the cross product between vec(A) and vec(B) .

If vec a=hat i+2hat j-3hat k and vec b=2hat i+4hat j+9hat k find a unit vector parallel to vec a+vec b

MODERN PUBLICATION-VECTOR ALGEBRA -EXERCISE 10 (c ) Short Answer Type Questions
  1. Find the position vector of the mid point of the ne segment A B ,\ wh...

    Text Solution

    |

  2. Find a vector in the direction of the vector 5 hat i - hat j + 2 h...

    Text Solution

    |

  3. Find a vector in the direction of vec a=2 hat i- hat j+2 hat k , whic...

    Text Solution

    |

  4. Find a vector in the direction of : vec(a)=hat(i)-2hat(j)+2hat(k),...

    Text Solution

    |

  5. Find a vector in the direction of : vec(a)=-2hat(i)+hat(j)+2hat(k)...

    Text Solution

    |

  6. Find the scalar components and magnitude of the vector joining the po...

    Text Solution

    |

  7. If |vec(a)|=3, what is : |5vec(a)|

    Text Solution

    |

  8. If |vec(a)|=3, what is : |-2vec(a)|

    Text Solution

    |

  9. If |vec(a)|=3, what is : |0vec(a)| ?

    Text Solution

    |

  10. If vec(a)=3hat(i)-2hat(j)+hat(k), vec(b)=2hat(i)-4 hat(j)-3 hat(k), fi...

    Text Solution

    |

  11. Let vec(a) be a given vector whose initial point is P(x(1), y(1)) and ...

    Text Solution

    |

  12. In the following, find the components of the vector vec(PQ) along x an...

    Text Solution

    |

  13. If the position vectors of the points A and B are : 7hat(i)+3hat(j)-ha...

    Text Solution

    |

  14. Find the position vector of the centroid of the Delta ABC when the pos...

    Text Solution

    |

  15. Show that the vectors vec(a)=2hat(i)+3hat(j) and vec(b)=4hat(i)+6hat(...

    Text Solution

    |

  16. Find a unit vector in the direction of (vec(a)+vec(b)), where : vec(a)...

    Text Solution

    |

  17. If vec(a)=2hat(i)-hat(j)+2hat(k) and vec(b)=6hat(i)+2hat(j)+3hat(k), ...

    Text Solution

    |

  18. Find the unit vector in the direction of vec(a)-vec(b), where : ve...

    Text Solution

    |

  19. If -> a= hat i+ hat j+ hat k , -> b=2 hat i- hat j+3 hat k and -...

    Text Solution

    |

  20. (a) Find the condition that the vectors vec(a)=k hat(i)+l hat(j) and v...

    Text Solution

    |