Home
Class 12
MATHS
Find the unit vector in the direction of...

Find the unit vector in the direction of `vec(a)-vec(b)`, where :
`vec(a)=hat(i)+3hat(j)-hat(k), vec(b)=3hat(i)+2hat(j)+hat(k)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the unit vector in the direction of \(\vec{a} - \vec{b}\), we will follow these steps: ### Step 1: Define the vectors Given: \[ \vec{a} = \hat{i} + 3\hat{j} - \hat{k} \] \[ \vec{b} = 3\hat{i} + 2\hat{j} + \hat{k} \] ### Step 2: Calculate \(\vec{a} - \vec{b}\) We subtract vector \(\vec{b}\) from vector \(\vec{a}\): \[ \vec{a} - \vec{b} = (\hat{i} + 3\hat{j} - \hat{k}) - (3\hat{i} + 2\hat{j} + \hat{k}) \] Calculating the components: - For \(\hat{i}\): \(1 - 3 = -2\) - For \(\hat{j}\): \(3 - 2 = 1\) - For \(\hat{k}\): \(-1 - 1 = -2\) Thus, \[ \vec{a} - \vec{b} = -2\hat{i} + 1\hat{j} - 2\hat{k} \] ### Step 3: Find the magnitude of \(\vec{a} - \vec{b}\) The magnitude of a vector \(\vec{v} = x\hat{i} + y\hat{j} + z\hat{k}\) is given by: \[ |\vec{v}| = \sqrt{x^2 + y^2 + z^2} \] For \(\vec{a} - \vec{b} = -2\hat{i} + 1\hat{j} - 2\hat{k}\): \[ |\vec{a} - \vec{b}| = \sqrt{(-2)^2 + (1)^2 + (-2)^2} \] Calculating the squares: \[ = \sqrt{4 + 1 + 4} = \sqrt{9} = 3 \] ### Step 4: Calculate the unit vector The unit vector in the direction of \(\vec{v}\) is given by: \[ \hat{u} = \frac{\vec{v}}{|\vec{v}|} \] Thus, the unit vector in the direction of \(\vec{a} - \vec{b}\) is: \[ \hat{u} = \frac{-2\hat{i} + 1\hat{j} - 2\hat{k}}{3} \] This can be expressed as: \[ \hat{u} = -\frac{2}{3}\hat{i} + \frac{1}{3}\hat{j} - \frac{2}{3}\hat{k} \] ### Final Answer The unit vector in the direction of \(\vec{a} - \vec{b}\) is: \[ \hat{u} = -\frac{2}{3}\hat{i} + \frac{1}{3}\hat{j} - \frac{2}{3}\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (c ) Long Answer Type Questions (I)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (c ) Long Answer Type Questions (II)|3 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (b) Short Answer Type Questions|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Find a unit vector in the direction of (vec(a)+vec(b)) , where : vec(a)=2hat(i)+2hat(j)-5hat(k) and vec(b)=2hat(i)+hat(j)+3hat(k) .

Find the unit vector in the direction of the sum of the vectors : vec(a) = 2hat(i)-hat(j)+2hat(k) and vec(b)=-hat(i)+hat(j)+3hat(k) .

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find |vec(a)xx vec(b)| , if vec(a)=2hat(i)+hat(j)+3hat(k) and vec(b)=3hat(i)+5hat(j)-2hat(k) .

Find the angle between the vectors vec(a) and vec(b) , when (i) vec(a)=hat(i)-2hat(j)+3 hat(k) and vec(b)=3hat(i)-2hat(j)+hat(k) (ii) vec(a)=3 hat(i)+hat(j)+2hat(k) and vec(b)=2hat(i)-2hat(j)+4 hat(k) (iii) vec(a)=hat(i)-hat(j) and vec(b)=hat(j)+hat(k) .

Find the unit vector in the direction of vec a+vec b,quad if quad vec a=2hat i-hat j+2hat k and vec b=-hat i+hat j-hat k

Find the angle between (vec(a)+vec(b)) and (vec(a)-vec(b)) , if vec(a)=(2 hat(i)-hat(j)+3hat(k)) and vec(b)=(3hat(i)+hat(j)+2hat(k)) .

Find the value of lambda for which the vectors vec(a), vec(b), vec(c) are coplanar, where (i) vec(a)=(2hat(i)-hat(j)+hat(k)), vec(b) = (hat(i)+2hat(j)+3hat(k) ) and vec(c)=(3 hat(i)+lambda hat(j) + 5 hat (k)) (ii) vec(a)lambda hat(i)-10 hat(j)-5k^(2), vec(b) =-7hat(i)-5hat(j) and vec(c)= hat(i)--4hat(j)-3hat(k) (iii) vec(a)=hat(i)-hat(j)+hat(k), vec(b)= 2hat( i) + hat(j)-hat(k) and vec(c)= lambda hat(i) - hat(j) + lambda hat(k)

Show that the vectors vec(a), vec(b), vec(c) are coplanar, when (i) vec(a)=hat(i)-2hat(j)+3hat(k), vec(b) = -2hat(i)+3hat(j)-4hat(k) and vec(c)=hat(i)-3hat(j)+5hat(k) (ii) vec(a)=hat(i)+3hat(j)+hat(k), vec(b)=2hat(i)-hat(j)-hat(k)and vec(c)=7hat(j)+3hat(k) (iii) vec(a)=2hat(i)-hat(j)+2hat(k), vec(b)=hat(i)+2hat(j)-3hat(k) and vec(c)=3hat(i)-4hat(j)+7hat(k)

a. Prove that the vector vec(A)=3hat(i)-2hat(j)+hat(k) , vec(B)=hat(i)-3hat(j)+5hat(k), and vec(C )=2hat(i)+hat(j)-4hat(k) from a right -angled triangle. b. Determine the unit vector parallel to the cross product of vector vec(A)=3hat(i)-5hat(j)+10hat(k) & =vec(B)=6hat(i)+5hat(j)+2hat(k).

MODERN PUBLICATION-VECTOR ALGEBRA -EXERCISE 10 (c ) Short Answer Type Questions
  1. Find the position vector of the mid point of the ne segment A B ,\ wh...

    Text Solution

    |

  2. Find a vector in the direction of the vector 5 hat i - hat j + 2 h...

    Text Solution

    |

  3. Find a vector in the direction of vec a=2 hat i- hat j+2 hat k , whic...

    Text Solution

    |

  4. Find a vector in the direction of : vec(a)=hat(i)-2hat(j)+2hat(k),...

    Text Solution

    |

  5. Find a vector in the direction of : vec(a)=-2hat(i)+hat(j)+2hat(k)...

    Text Solution

    |

  6. Find the scalar components and magnitude of the vector joining the po...

    Text Solution

    |

  7. If |vec(a)|=3, what is : |5vec(a)|

    Text Solution

    |

  8. If |vec(a)|=3, what is : |-2vec(a)|

    Text Solution

    |

  9. If |vec(a)|=3, what is : |0vec(a)| ?

    Text Solution

    |

  10. If vec(a)=3hat(i)-2hat(j)+hat(k), vec(b)=2hat(i)-4 hat(j)-3 hat(k), fi...

    Text Solution

    |

  11. Let vec(a) be a given vector whose initial point is P(x(1), y(1)) and ...

    Text Solution

    |

  12. In the following, find the components of the vector vec(PQ) along x an...

    Text Solution

    |

  13. If the position vectors of the points A and B are : 7hat(i)+3hat(j)-ha...

    Text Solution

    |

  14. Find the position vector of the centroid of the Delta ABC when the pos...

    Text Solution

    |

  15. Show that the vectors vec(a)=2hat(i)+3hat(j) and vec(b)=4hat(i)+6hat(...

    Text Solution

    |

  16. Find a unit vector in the direction of (vec(a)+vec(b)), where : vec(a)...

    Text Solution

    |

  17. If vec(a)=2hat(i)-hat(j)+2hat(k) and vec(b)=6hat(i)+2hat(j)+3hat(k), ...

    Text Solution

    |

  18. Find the unit vector in the direction of vec(a)-vec(b), where : ve...

    Text Solution

    |

  19. If -> a= hat i+ hat j+ hat k , -> b=2 hat i- hat j+3 hat k and -...

    Text Solution

    |

  20. (a) Find the condition that the vectors vec(a)=k hat(i)+l hat(j) and v...

    Text Solution

    |