Home
Class 12
MATHS
(a) Find the condition that the vectors ...

(a) Find the condition that the vectors `vec(a)=k hat(i)+l hat(j)` and `vec(b)=l hat(i)+k hat(j)(k, l ne 0)` are parallel.
(b) Show that the vectors `2hat(i)-3hat(j)+4hat(k)` and `-4hat(i)+6hat(j)-8hat(k)` are collinear.

Text Solution

AI Generated Solution

The correct Answer is:
### Solution: #### (a) Finding the Condition for Vectors \( \vec{a} \) and \( \vec{b} \) to be Parallel Given: - \( \vec{a} = k \hat{i} + l \hat{j} \) - \( \vec{b} = l \hat{i} + k \hat{j} \) Vectors \( \vec{a} \) and \( \vec{b} \) are parallel if there exists a scalar \( \lambda \) such that: \[ \vec{a} = \lambda \vec{b} \] This implies: \[ k \hat{i} + l \hat{j} = \lambda (l \hat{i} + k \hat{j}) \] This leads to two equations: 1. \( k = \lambda l \) (1) 2. \( l = \lambda k \) (2) From equation (1), we can express \( \lambda \): \[ \lambda = \frac{k}{l} \quad (l \neq 0) \] Substituting \( \lambda \) from equation (1) into equation (2): \[ l = \frac{k}{l} k \] \[ l^2 = k^2 \] Thus, we have: \[ k^2 - l^2 = 0 \] Factoring gives: \[ (k - l)(k + l) = 0 \] This results in two conditions: 1. \( k = l \) 2. \( k = -l \) Therefore, the conditions for the vectors \( \vec{a} \) and \( \vec{b} \) to be parallel are: \[ k = l \quad \text{or} \quad k = -l \] --- #### (b) Showing that the Vectors are Collinear Given vectors: - \( \vec{m} = 2 \hat{i} - 3 \hat{j} + 4 \hat{k} \) - \( \vec{n} = -4 \hat{i} + 6 \hat{j} - 8 \hat{k} \) To show that \( \vec{m} \) and \( \vec{n} \) are collinear, we need to check if one vector is a scalar multiple of the other. We can express \( \vec{n} \) in terms of \( \vec{m} \): \[ \vec{n} = -2 \vec{m} \] Calculating: \[ -2 \vec{m} = -2(2 \hat{i} - 3 \hat{j} + 4 \hat{k}) = -4 \hat{i} + 6 \hat{j} - 8 \hat{k} \] This shows that: \[ \vec{n} = -2 \vec{m} \] Since \( \vec{n} \) is a scalar multiple of \( \vec{m} \), we conclude that the vectors \( \vec{m} \) and \( \vec{n} \) are collinear. ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (c ) Long Answer Type Questions (I)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (c ) Long Answer Type Questions (II)|3 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (b) Short Answer Type Questions|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

Show that the vectors hat(i)-3hat(j)+4hat(k),2hat(i)-hat(j)+2hat(k)and 4hat(i)-7hat(j)+10hat(k) are coplanar.

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find the angle between the vectors : vec(a)=hat(i)+hat(j)-hat(k) " and " vec(b)=hat(i)-hat(j)+hat(k)

Find th esine of angles between vectors vec(a)= 2hat(i) - 6hat(j) - 3hat(k), and vec(b) = 4hat(i) + 3hat(j)- hat(k) ?

Find the dot product of two vectors vec(A)=3hat(i)+2hat(j)-4hat(k) and vec(B)=2hat(i)-3hat(j)-6hat(k) .

The sine of the angle between vectors vec(a)=2hat(i)-6hat(j)-3hat(k) and vec(b)=4hat(i)+3hat(j)-hat(k)

The unit vactor parallel to the resultant of the vectors vec(A)=4hat(i)+3hat(j)+6hat(k) and vec(B)=-hat(i)+3hat(j)-8hat(k) is :-

The unit vector parallel to the resultant of the vectors vec(A)= 4hat(i)+3hat(j)+6hat(k) and vec(B)= -hat(i)+3hat(j)-8hat(k) is

Find the angel between the vectors vec a=hat i-hat j+hat k and vec b=hat i+hat j-hat k

MODERN PUBLICATION-VECTOR ALGEBRA -EXERCISE 10 (c ) Short Answer Type Questions
  1. Find the position vector of the mid point of the ne segment A B ,\ wh...

    Text Solution

    |

  2. Find a vector in the direction of the vector 5 hat i - hat j + 2 h...

    Text Solution

    |

  3. Find a vector in the direction of vec a=2 hat i- hat j+2 hat k , whic...

    Text Solution

    |

  4. Find a vector in the direction of : vec(a)=hat(i)-2hat(j)+2hat(k),...

    Text Solution

    |

  5. Find a vector in the direction of : vec(a)=-2hat(i)+hat(j)+2hat(k)...

    Text Solution

    |

  6. Find the scalar components and magnitude of the vector joining the po...

    Text Solution

    |

  7. If |vec(a)|=3, what is : |5vec(a)|

    Text Solution

    |

  8. If |vec(a)|=3, what is : |-2vec(a)|

    Text Solution

    |

  9. If |vec(a)|=3, what is : |0vec(a)| ?

    Text Solution

    |

  10. If vec(a)=3hat(i)-2hat(j)+hat(k), vec(b)=2hat(i)-4 hat(j)-3 hat(k), fi...

    Text Solution

    |

  11. Let vec(a) be a given vector whose initial point is P(x(1), y(1)) and ...

    Text Solution

    |

  12. In the following, find the components of the vector vec(PQ) along x an...

    Text Solution

    |

  13. If the position vectors of the points A and B are : 7hat(i)+3hat(j)-ha...

    Text Solution

    |

  14. Find the position vector of the centroid of the Delta ABC when the pos...

    Text Solution

    |

  15. Show that the vectors vec(a)=2hat(i)+3hat(j) and vec(b)=4hat(i)+6hat(...

    Text Solution

    |

  16. Find a unit vector in the direction of (vec(a)+vec(b)), where : vec(a)...

    Text Solution

    |

  17. If vec(a)=2hat(i)-hat(j)+2hat(k) and vec(b)=6hat(i)+2hat(j)+3hat(k), ...

    Text Solution

    |

  18. Find the unit vector in the direction of vec(a)-vec(b), where : ve...

    Text Solution

    |

  19. If -> a= hat i+ hat j+ hat k , -> b=2 hat i- hat j+3 hat k and -...

    Text Solution

    |

  20. (a) Find the condition that the vectors vec(a)=k hat(i)+l hat(j) and v...

    Text Solution

    |