Home
Class 12
MATHS
Area of a rectangle having vertices : ...

Area of a rectangle having vertices :
`A (-hat(i)+(1)/(2)hat(j)+4hat(k)), " " B(hat(i)+(1)/(2)hat(j)+4hat(k))`,
`C(hat(i)-(1)/(2)hat(j)+4hat(k)), " " D(-hat(i)-(1)/(2)hat(j)+4hat(k))` is :

A

`(1)/(2)` square unit

B

1 square unit

C

2 square units

D

4 square units

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the rectangle defined by the vertices A, B, C, and D, we will follow these steps: ### Step 1: Identify the position vectors of the vertices The position vectors of the vertices are given as: - \( A = -\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k} \) - \( B = \hat{i} + \frac{1}{2}\hat{j} + 4\hat{k} \) - \( C = \hat{i} - \frac{1}{2}\hat{j} + 4\hat{k} \) - \( D = -\hat{i} - \frac{1}{2}\hat{j} + 4\hat{k} \) ### Step 2: Calculate the vectors AB and AD To find the area of the rectangle, we first need the vectors \( \overrightarrow{AB} \) and \( \overrightarrow{AD} \). **Vector \( \overrightarrow{AB} \)**: \[ \overrightarrow{AB} = \overrightarrow{B} - \overrightarrow{A} = \left( \hat{i} + \frac{1}{2}\hat{j} + 4\hat{k} \right) - \left( -\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k} \right) \] \[ = \hat{i} + \frac{1}{2}\hat{j} + 4\hat{k} + \hat{i} - \frac{1}{2}\hat{j} - 4\hat{k} \] \[ = (1 + 1)\hat{i} + \left(\frac{1}{2} - \frac{1}{2}\right)\hat{j} + (4 - 4)\hat{k} = 2\hat{i} + 0\hat{j} + 0\hat{k} \] Thus, \( \overrightarrow{AB} = 2\hat{i} \). **Vector \( \overrightarrow{AD} \)**: \[ \overrightarrow{AD} = \overrightarrow{D} - \overrightarrow{A} = \left( -\hat{i} - \frac{1}{2}\hat{j} + 4\hat{k} \right) - \left( -\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k} \right) \] \[ = -\hat{i} - \frac{1}{2}\hat{j} + 4\hat{k} + \hat{i} - \frac{1}{2}\hat{j} - 4\hat{k} \] \[ = (-1 + 1)\hat{i} + \left(-\frac{1}{2} - \frac{1}{2}\right)\hat{j} + (4 - 4)\hat{k} = 0\hat{i} - 1\hat{j} + 0\hat{k} \] Thus, \( \overrightarrow{AD} = -\hat{j} \). ### Step 3: Calculate the cross product \( \overrightarrow{AB} \times \overrightarrow{AD} \) Now we can find the area of the rectangle using the cross product of \( \overrightarrow{AB} \) and \( \overrightarrow{AD} \): \[ \overrightarrow{AB} \times \overrightarrow{AD} = (2\hat{i}) \times (-\hat{j}) \] Using the right-hand rule for the cross product: \[ = 2(-\hat{k}) = -2\hat{k} \] ### Step 4: Calculate the magnitude of the cross product The area of the rectangle is given by the magnitude of the cross product: \[ \text{Area} = |\overrightarrow{AB} \times \overrightarrow{AD}| = |-2\hat{k}| = 2 \] ### Final Answer Thus, the area of the rectangle is \( 2 \). ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (B. Fill in the Blanks)|17 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (C. True/False Questions)|10 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Long Answer Type Questions (II)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

What is the area of the rectangle having vertices A, B, C and D with positive vectors -hat(i)+(1)/(2) hat(j)+4hat(k), hat(i)+(1)/(2)hat(j)+4hat(k), hat(i)-(1)/(2) hat(j)+4hat(k) and -hat(1)-(1)/(2) hat(j)+4hat(k) ?

vec(r )=(-4hat(i)+4hat(j) +hat(k)) + lambda (hat(i) +hat(j) -hat(k)) vec(r)=(-3hat(i) -8hat(j) -3hat(k)) + mu (2hat(i) +3hat(j) +3hat(k))

Area of a rectangle having vertices A, B, C and D with position vectors - hat i+1/2 hat j+4 hat k , hat i+1/2 hat j+4 hat k , hat i-1/2 hat j+4 hat k and - hat i-1/2 hat j+4 hat k respectively is (A) 1/2 (B) 1 (C) 2 (D) 4

The angle between the line r=(hat(i)+2hat(j)-hat(k))+lamda(hat(i)-hat(j)+hat(k)) and the plane r*(2hat(i)-hat(j)+hat(k))=4 is

Find the shortest distance between the lines : vec(r) = (4hat(i) - hat(j)) + lambda(hat(i) + 2hat(j) - 3hat(k)) and vec(r) = (hat(i) - hat(j) + 2hat(k)) + mu (2hat(i) + 4hat(j) - 5hat(k))

If a=2hat(i)+3hat(j)-hat(k), b=-hat(i)+2hat(j)-4hat(k), c=hat(i)+hat(j)+hat(k) , then find the value of (atimesb)*(atimesc) .

Show that the following vectors are coplanar : -2hat(i)-2hat(j)+4hat(k), -2hat(i)+4hat(j)-2hat(k), 4hat(i)-2hat(k) and hat(i)-hat(j)+hat(k) .

Express -hat(i)-3hat(j)+4hat(k) as the linear combination of the vectors 2hat(i)+hat(j)-4hat(k) , 2hat(i)-hat(j)+3hat(k) and 3hat(i)+hat(j)-2hat(k) .

MODERN PUBLICATION-VECTOR ALGEBRA -Objective Type Questions (A. Multiple Choice Questions)
  1. Let lambda be any non - zero scalar. Then for what possible values of ...

    Text Solution

    |

  2. Let the vectors vec a and vec b be such that |vec a|=3 and | v...

    Text Solution

    |

  3. Area of a rectangle having vertices : A (-hat(i)+(1)/(2)hat(j)+4hat...

    Text Solution

    |

  4. If theta is the angle between two vectors vec a\ a n d\ vec b ,\ t ...

    Text Solution

    |

  5. Let vec(a) and vec(b) be two unit vectors and theta is the angle betwe...

    Text Solution

    |

  6. Write the value of hat(i).(hat(j)xxhat(k))+hat(j).(hat(i)xxhat(k))+ha...

    Text Solution

    |

  7. If is the angle between any two vectors vec a and vec b , t...

    Text Solution

    |

  8. The area of the triangle whose adjacent sides are : vec(a)=3hat(i)+hat...

    Text Solution

    |

  9. The magnitude of the vector 6hat(i)+2hat(j)+3hat(k) is :

    Text Solution

    |

  10. The vector with initial point P(2,-3,5) and terminal point Q(3,-4,7) i...

    Text Solution

    |

  11. The angle between the vectors hat i -hat j and hat j - hat k is

    Text Solution

    |

  12. The value of 'lambda' for which the two vectors : 2hat(i)-hat(j)+2hat(...

    Text Solution

    |

  13. If (2hat(i)+6hat(j)+ 27hat(k))xx(hat(i)+phat(j)+qhat(k))=vec(0), then ...

    Text Solution

    |

  14. If vec(a)=2hat(i)+3hat(j)-hat(k), then |vec(a)| is :

    Text Solution

    |

  15. Write the value of hat(i).(hat(j)xxhat(k))+hat(j).(hat(i)xxhat(k))+ha...

    Text Solution

    |

  16. For mutually perpendicular unit vectors hat(i), hat(j), hat(k), we hav...

    Text Solution

    |

  17. Direction - ratios of vector vec(a)=hat(i)+hat(j)-2hat(k) are :

    Text Solution

    |

  18. If vec(a)=hat(i)+2hat(j), then |vec(a)| is :

    Text Solution

    |

  19. Direction - cosines of vec(a)=hat(i)+hat(j)-2hat(k) are :

    Text Solution

    |

  20. If p hat(i)+3hat(j) is a vector of magnitude 5, then the value of p is...

    Text Solution

    |